log怎么算出来的

高中数学log的公式:log(a)(MN)=log(a)(M)+log(a)(N)。标准语言表达式 是若a=b(a>0且a≠1) 则n=logab 若a^n=b(a>0且a≠1)则n=log(a^b)。

数学中log怎么计算 数学中log的计算公式数学中log怎么计算 数学中log的计算公式


数学中log怎么计算 数学中log的计算公式


"化乘除为加减",从而达到简化计算的思路的方法,不正是对数运算的明显特征。其中纳皮尔的这种计算方法,实际上已经完全是现代数学中"对数运算"的思想了。

运算法则:

如果a>0,且a≠1,M>0,N>0,那么:

①loga(MN)=logaM + logaN。

②loga(M/N)=logaM-logaN; ③对logaM中M的n次方有=nlogaM。

如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数。

定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b)。一般的,将底数为10的对数叫做常用对数,即lga=log10(a)。

log的运算公式是什么?

对数的运算公式:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)blog(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算公式:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

扩展资料:

对数的发展历史:

将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H.Briggs,1561—1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。

由于所用的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。

根据对数运算原理,人们还发明了对数计算尺。300多年来,对数计算尺一直是科学工作者,特别是工程技术人员必备的计算工具,直到20世纪70年代才让位给电子计算器。但是,对数的思想方法却仍然具有生命力。

从对数的发明过程可以看到,生产、科学技术的需要是数学发展的主要动力。建立对数与指数之间的联系的过程表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力

log基本运算公式

log基本运算公式如下:

1、loga(MN)=logaM+logaN;

2、loga(M/N)=logaM-logaN;

3、logaNn=nlogaN;

4、logMN=logaM/logaN;

5、logMN=-logNM;

6、log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b);

7、loga(b)logb(a)=1;

8、loge(x)=ln(x);

9、lg(x)=log10(x)。

log函数的性质

如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。对数函数化简问题,底数则要>0且≠1真数>0。

并且在比较两个函数值时如果底数一样,真数越大,函数值越大,(a>1时)。如果底数一样,真数越大,函数值越小,(0

log是怎样运算的,公式是什么?

1、a^log(a)(b)=b

2、log(a)(a)=1

3、log(a)(MN)=log(a)(M)+log(a)(N);

4、log(a)(M÷N)=log(a)(M)-log(a)(N);

5、log(a)(M^n)=nlog(a)(M)

6、log(a)[M^(1/n)]=log(a)(M)/n

扩展资料:

一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

有理和无理指数

如果

是正整数,

表示等于

的个因子的加减:

但是,如果是

不等于1的正实数,这个定义可以扩展到在一个域中的任何实数

(参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数

,有一个对数函数和一个指数函数,它们互为反函数。

对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。

复对数

复对数计算公式

复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。

log对数的运算法则是什么?

对数公式的运算法则,如下图所示:

推导过程有:

扩展资料:

1、对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

2、对数运算,实际上也就是指数在运算。

参考资料: