数学中考必背知识点

一、相似三角形(7个考点)

解三角形知识点_解三角形知识点归纳笔记解三角形知识点_解三角形知识点归纳笔记


解三角形知识点_解三角形知识点归纳笔记


考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。考核要求:

(1)理解相似形的概念;

(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

考点4:相似三角形的判定和性质及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

考点5:三角形的重心

考核要求:知道重心的定义并初步应用。

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

二、锐角三角比(2个考点)

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

考点9:解直角三角形及其应用

考核要求:

(1)理解解直角三角形的意义;

(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

三、二次函数(4个考点)

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:

(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;

(2)知道常值函数;

(3)知道函数的表示方法,知道符号的意义。

考点11:用待定系数法求二次函数的解析式

考核要求:

(1)掌握求函数解析式的方法;

(2)在求函数解析式中熟练运用待定系数法。

注意求函数解析式的步骤:一设、二代、三列、四还原。

考点12:画二次函数的图像

考核要求:

(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像

(2)理解二次函数的图像,体会数形结合思想;

(3)会画二次函数的大致图像。

考点13:二次函数的图像及其基本性质

考核要求:

(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;

(2)会用配方法求二次函数的顶点坐标,并说出二次函数的1.相交弦定理有关性质。

注意:

(1)解题时要数形结合;

(2)二次函数的平移要化成顶点式。

四、圆的相关概念(6个考点)

考点14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

考点15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

考点16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一。

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

考点18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

考点19:画正三、四、六边形。

考核要求:能用基本作图工具,正确作出正三、四、六边形。

五、数据整理和概率统计(9个考点)

考点20:确定和随机

考核要求:

(1)理解必然、不可能、随机的概念,知道确定与必然、不可能的关系;

(2)能区分简单生活中的必然、不可能、随机。

考点21:发生的可能性大小,的概率

考核要求:

(1)知道各种发生的可能性大小不同,能判断一些随机发生的可能的大小并排出大小顺序;

(2)知道概率的含义和表示符号,了解必然、不可能的概率和随机概率的取值范围;

(3)理解随机发生的频率之间的区别和联系,会根据大数次试验所得频率估计的概率。

注意:

(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述发生的可能性的大小;

(2)的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更。

考点22:等可能试验中的概率问题及概率计算

考核要求

(1)理解等可能试验的概念,会用等可能试验中概率计算公式来计算简单的概率;

(2)会用枚举法或画“树形图”方法求等可能的概率,会用区域面积之比解决简单的概率问题;

(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

注意:

(1)计算前要先确定是否为可能;

(2)用枚举法或画“树形图”方法求等可能的概率过程中要将所有等可能情况考虑完整。

考点23:数据整理与统计图表

考核要求:

(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点24:统计的含义

考核要求:

(1)知道统计的意义和一般研究过程;

(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点25:平均数、加权平均数的概念和计算

考核要求:

(1)理解平均数、加权平均数的概念;

(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点26:中位数、众数、方、标准的概念和计算

考核要求:

(1)知道中位数、众数、方、标准的概念;

(2)会求一组数据的中位数、众数、方、标准,并能用于解决简单的统计问题。

注意:

(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

(2)求中位数之前必须先将数据排序。

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图

考核要求:

(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在别:在同一个问题中,频数反映的是对象出现频繁程度的数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.

考点28:中位数、众数、方、标准、频数、频率的应用

考核要求:

(1)了解基本统计量(平均数、众数、中位数、方、标准、频数、频率)的意计算及其应用,并掌握其概念和计算方法;

(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

初中九年级数学下册知识点

初中九年级数学下册知识点1 1、二次根式成立的条件:被开方数是一个非负数。

2、二次根式的实质:是一个非负数的算术平方根。因此√a≥0。

3、两个公式:(√a)2=a(a≥0);√a2=∣a∣.

4、二次根式的乘除:√a×√b=√ab(a≥0,b≥0);√a÷√b=√a/b(a≥0,b>0).

5、最简二次根式:⑴被开方数不含分母;⑵被开方数中不含能开的尽方的因数或因式。

6、二次根式的加减:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

7、利用公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2.

第二十二章一元二次方程

①是整式方程,②未知数的次数是二次,③只含有一个未知数,④二次项系数不为零。

2、化为一元二次方程的一般形式:按降幂排列,二次项系数通常为正,右端为零。

3、一元二次方程的根:代入使方程成立。

①配方法:移项→二次项系数化为一→两边同时加上一次项系数的一半→配方→开方→写出方程的解。

②公式法:x=(-b±√b2-4ac)/2a,

③因式分解法:右端为零,左端分解为两个因式的乘积。

5、一元二次方程的根的判别式①当△>0时,方程有两个不相等的实数根

②当△=0时,方程有两个相等的实数根,③当△<0时,方程没有实数根。

注意:应用的前提条件是:a≠0.

注意:应用的前提条件是:a≠0,△≥0.

7、列方程解应用题:审题设元→列代数式、列方程→整理成一般形式→解方程→检验作答。

第二十三章旋转

1、旋转的三要素:旋转中心,旋转方向,旋转角。

2、旋转的性质:①对应点到旋转中心的距离相等,②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等。

关键:找好对应线段、对应角。

3、中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称。

4、中心对称的性质:①关于中心对称的两个图形,对应点所连线段都经过对称中心,而且被对称中心所平分。②关于中心对称的两个图形是全等形。

5、中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

6、对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。

第二十四章圆

1、确定圆的条件:圆心→位置,半径→大小。

2、和圆有关的概念:弦---直径,弧—半圆、优弧、劣弧,圆心角,圆周角,弦心距。

3、圆的对称性:圆既是轴对称图形,又是中心对称图形。

4、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

5、圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,弦的弦心距相等。

引申:在这四组量中,只要有一组量对应相等,其余各组量都相等。

6、圆周角定理:①圆周角等于同弧所对的圆心角的一半,

②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;相等的圆周角所对的弧相等,

③半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

7、内心和外心:①内心是三角形内角平分线的交点,它到三角形三边的距离相等。

②外心是三角形三边垂直平分线的交点,它到三角形三个顶点的距离相等。

8、直线和圆的位置关系:相交→d

9、切线的判定:“有点连圆心”→证垂直。“无点做垂人教版九年级数学知识点 总结 相关 文章 :线”→证d=r。

切线的性质:圆的切线垂直于经过切点的半径。

10、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

11、圆内接四边形的性质:圆内接四边形的对角互补,每一个外角等于它的内对角。

12、圆外切四边形的性质:圆外切四边形的对边之和相等。

13、圆和圆的位置关系:外离→d>R+r.外切→d=R+r.相交→R-r

14、正多边形和圆:半径→外接圆的半径,中心角→每一边所对的圆心角,边心距→中心到一边的距离。

15、弧长和扇形面积:L=n∏R/180.S扇形=n∏R2/360.

16、圆锥的侧面积和全面积:圆锥的.母线长=扇形的半径,圆锥底面圆周长=扇形弧长,圆锥的侧面积=扇形面积,圆锥的全面积=扇形面积+底面圆面积。

第二十五章概率初步

1、三种:随机、不可能、必然。

2、概率:P(A)=p.0≤P(A)≤1.

3、古典概率的求法:①列举法(把所有可能结果都表示出来),②列表法,③树形图。

4、用频率估计概率:根据一个随机发生的发生的频率所逐渐稳定到的常数,可以估计这个发生的概率。

第二十六章二次函数

1、定义:形如y=ax2+bx+c(a≠0,a、b、c是常数)的函数叫二次函数。

②y=ax2+c:顶点坐标:(0、c);对称轴:y轴;

③y=a(x-h)2:顶点坐标:(h、0);对称轴:直线x=h;

④y=a(x-h)2+k:顶点坐标:(h、k);对称轴:直线x=h;

⑤y=ax2+bx+c:顶点坐标:(-b/2a,4ac-b2/4a);对称轴:直线x=-b/2a

3、a、b、c符号的判定:a:开口方向向上★ 初二数学下册知识点归纳与数学学习方法→a>0;开口方向向下→a<0。

b:与a左同右异,对称轴在y轴左侧,a、b同号;对称轴在y轴右侧,a、b异号。

C:交与y轴正半轴,c>0;交与y轴负半轴,c<0

b2-4ac:与x轴交点的个数,△>0→两个交点,△<0→无交点,△=0→一个交点。

3、平移规律:“正左负右”“正上负下”。

前提:配方成y=a(x-h)2+k的形式。

4、待定系数法确定函数关系式:①顶点在原点选y=ax2;

②顶点在y轴选y=ax2+c;

③通过坐标原点选y=ax2+bx;

④知道顶点在x轴上选y=a(x-h)2;

⑤知道顶点坐标选y=a(x-h)2+k;

⑥知道三点的坐标选y=ax2+bx+c。

5、其他应用:求与x轴的交点→解一元二次方程;与y轴交点为(0、c)。

6、对称规律:

①两抛物线关于x轴对称:a、b、c都变为其相反数。

②两抛物线关于y轴对称:a、c不变,b变为其相反数。

7、实际问题:利润=销售额-总进价-其他费用,利润=(售价-进价)销售量-其他费用。

初中九年级数学下册知识点2

一、 锐角三角函数

1.正弦:在rt△abc中,锐角∠a的对边a与斜边的比叫做∠a的正弦,记作sina,即sina=∠a的对边/斜边=a/c;

2.余弦:在rt△abc中,锐角∠a的邻边b与斜边的比叫做∠a的余弦,记作cosa,即cosa=∠a的邻边/斜边=b/c;

3.正切:在rt△abc中,锐角∠a的对边与邻边的比叫做∠a的正切,记作tana,即tana=∠a的对边/∠a的邻边=a/b。

①tana是一个完整的符号,它表示∠a的正切,记号里习惯省去角的符号“∠”;

②tana没有单位,它表示一个比值,即直角三角形中∠a的对边与邻边的比;

③tana不表示“tan”乘以“a”;

④tana的值越大,越陡,∠a越大;∠a越大,越陡,tana的值越大。

4、余切:定义:在rt△abc中,锐角∠a的邻边与对边的比叫做∠a的余切,记作cota,即cota=∠a的邻边/∠a的对边=b/a;

5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:

若∠a为锐角,则①sina=cos(90°∠a)等等。

6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。

7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。0≤sinα≤1,0≤cosα≤1。

同角的三角函数间的关系:

tanα·cotα=1,

tanα=sinα/cosα,

cotα=cosα/sinα,sin2α+cos2α=1

二、解直角三角形

1.解直角三角形:在直角三角形中,由已知元素求未知元素的过程。

2.在解直角三角形的过程中用到的关系:(在△abc中,∠c为直角,∠a、∠b、∠c所对的边分别为a、b、c,)

(1)三边之间的关系:a2+b2=c2;(勾股定理)

(2)两锐角的关系:∠a+∠b=90°;

(3)边与角之间的关系:

sina=a/c;

cosa=b/c;

tana=a/b。

sina=co

cosa=sinb

sina=cos(90°-a)

sin2α+cos2α=1

初中九年级数学下册知识点3

一、投影

1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做 投影线 ,投影所在的平面叫做 投影面 。

2.平行投影:由平行光线形成的投影是平行投影。(光源特别远)

3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影

4.正投影:投影线垂直于投影面产生的投影叫做正投影。物体正投影的形状、大小与它相对于投影面的位置有关。

5.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。当物体的某个面顶斜于投影面时,这个面的正投影变小。当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。

二、三视图

1.三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。三视图就是主视图、俯视图、左视图的总称。另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

2.主视图:在正面内得到的由前向后观察物体的视图。

3.俯视图:在水平面内得到的由上向下观察物体的视图。

4.左视图:在侧面内得到的由左向右观察物体的视图。

5.三个视图的位置关系:

①主视图在上、俯视图在下、左视图在右;

②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。

③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。

6.画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。

等腰三角形知识点总结

等腰三角形的判定 方法

等腰三角形知识点总结

等腰三角形的知识点不算十分的多,而且较为简单,但却是考试的必考点之一。以下是我为大家精心整理的等腰三角形知识点总结,欢迎大家阅读。

等腰三角形知识点总结 等腰三角形的轴对称性:

(1)等腰三角形是轴对称图形.

(2)顶角平分线所在的直线是它的对称轴.

等腰三角形顶角的平分线,底边上的

中线,底边上的高互相重合(三线合一)

等腰三角形两底角的平分线相等.

等腰三角形两腰上的中线相等.

等腰三角形两腰上的高相等.

以等腰三角形为条件时的常用辅助线:

如图:若AB=AC

①作AD⊥BC于D,必有结论:∠1=∠2,BD=DC

②若BD=DC,连结AD,必有结论:∠1=∠2,AD⊥BC

③作AD平分∠BAC必有结论:AD⊥BC,BD=DC

作辅助线时,一定要作满足其中一个性质的辅助线,然后证出其它两个性质,不能这样作:作AD⊥BC,使∠1=∠2.

例1.一次数学实践活动的内容是测量河宽,如图,即测量A,B之间的距离.同学们想出了许多方法,其中小聪的方法是:从点A出发,沿着与直线AB成60 °角的AC方向前进至C,在C处测得C=30 ° .量出AC的长,它就是河宽(即A,B之间的距离).这个方确吗?请说明理由.

解:小聪的测量方确.理由如下:

∵ ∠DAC= ∠B+ ∠C

(三角形的外角的性质)

=60 ° -30 ° =30 °

∴ ∠ABC= ∠C

∴AB=AC(在一个三角形中,等角对等边.)60 °BAC

例2:上午10 时,一条船从A处出发以20海里每小时的速度向正北航行,中午12时到达B处,从A、B望灯塔C,测得∠NAC=40°, ∠NBC=80°求从B处到灯塔C的距离

解:∵∠NBC=∠A+∠C

∴∠C=80°- 40°= 40°

∴ BA=BC(等角对等边)

∵AB=20(12-10)=40∴BC=40答:B处到达灯塔C40海里ABN80°40°C

1、已知等腰三角形的两边分别是4和6,则它的周长是( )

(A)14 (B)15 (C)16 (D)14或16

2、等腰三角形的'周长是30,一边长是12,则另两边长是______________

判断下列语句是否正确。

(1)等腰三角形的角平分线、中线和高互相重合。( )

内角也为60°. ( )

(3)等腰三角形的底角都是锐角. ( )

(4)钝角三角形不可能是等腰三角形 . ( )

一、基础训练

1、等腰三角形的周长为18,其中一条边是8,

求另外两条边长。

2、等腰三角形中有一个角为40°,求其余各角的度数。

3、已知a、b、c是△ ABC的三边的长,且 a2+2ab=c2+2bc,则△ ABC是 三角形。

4、如图,在六边形ABCDEF中,各内角都为120 °,且AB=2,BC=3,CD=5,DE=4,求六边形ABCDEF的周长。

例1、在△ ABC中,AB=AC,BD=DC,DE⊥ AB,DF⊥ AC,垂足为E、F,那么DE与DF相等吗?试说明理由。

例2、 在△ ABC中AB=AC,D,E,F,分别为AB,BC,AC上的点且BD=CE,∠ DEF=∠B, 试说明△ DEF是等腰三角形探究题如图,AB=AC,BD平分∠ABC,CD平分∠ACB。问:

(1)图中有几个等腰三角形?

(2)若过D作EF∥ BC则图中有几个等腰三角形?

(3)线段EF与线段BE,CF有何数量关系?

(4)若过△ABC的一个内角和一个外角平分线的交点作这两个角的公共边的平行线,

如图,EF与BE,CF三者有何数量关系?

(5)若过△ABC的两个外角平分线的交点作这两个角的公共边的平行线,

如图,EF与BE,CF三者有何数量关系?A数学乐园

在△ABC中,AB=AC若过其中一个顶点

的一条直线,将ABC分成两个等腰三角形,

求△ABC各内角的度数

考考你思维的缜密性

例6 .如图2-8-1,中,AB=AC,D为AB上一点,E为AC延长线上一点,且BD=CE,DE交BC于G请说明DG=EG的理由.

思路 因为△GDB和△GEC不全等,所以考虑在△GDB内作出一个与△GEC全等的三角形。

说明 本题易明显得出DG和EG所在的△DBG和△ECG不全等,故要构造三角形的全等,本题的另一种证法是过E作EF∥BD,交BC的延长线于F,证明△DBG≌△EFG,同学们不妨试一试。

例7. 如图2-8-6,在△ABC中,AB=AC=CB,AE=CD, AD、BE相交于P,BQ⊥AD于Q. 请说明BP=2PQ的理由.

思路 在Rt△BPQ中,本题的结论等价于证明∠PBQ=30°

证明 ∵AB=CA,∠BAE=∠ACD=60°,AE=CD,

∴△BAE≌△ACD

∴∠ABE=∠CAD

∴∠BPQ=∠ABE+∠BAP

=∠CAD+∠BAP=60°

又∵BQ⊥AD

∴∠PBQ=30°

∴BP=2PQ

例8:①0时,②a0时,0(n是偶数),0(n是奇数)如图、在△ABC中,D,E在

直线BC上,且AB=BC=AC=CE=BD,

求∠EAC的度数。

探索:如图、在△ABC中,D,E

在直线BC上,且AB=AC=CE=BD,

∠DAE=100°,求∠EAC的度数。

2.等腰三角形顶角为36°,底角为_________。

3.等腰三角形顶角和一个底角之和为100°,则顶角度数为_____________。

4.等腰三角形两个角之比为4:1,则顶角为__________,底角为___________。

5.等腰三角形两边长为4、6,这个三角形周长为_____________。

6.已知△ABC中AB=AC,AB垂直平分线交AC于E,交AB于D,连结BE,若∠A=50°,∠EBC=__________。

7.△ABC中,AB=AC,AD⊥BC于D,若△ABC的周长为50,△ABD的周长为40,则AD=____________。

8.若等腰三角形顶角为n度,则腰上的高与底边的夹角为_____________。

9.如图,线段OD的一个端点O在直线a上,以OD为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画多少个?DHOCEFa⌒150°9.已知等腰三角形一腰上的中线将三角形周长分成2:1两部分,已知三角形底边长为5,求腰长?

解:如图,令CD=x,则AD=x,AB=2x

∵底边BC=5

∴BC+CD=5+x

AB+AD=3x

∴(5+x):3x=2:1

或3x:(5+x)=2:1

10、如图,D是正△ABC边AC上的中点,E是BC延长线上一点,且CE=CD,诬蔑说明BD=DE的理由.

3、如图,在Rt△ABC中,∠ACB=900, ∠CAB的平分线AD交BC于D,AB边上的高线CE交AB于E,交AD于F,求证:CD=CF

;

三角函数,解三角形,平面向量的知识点占高考的分值是多少

64、一元二次方程的解法:、线段的垂直平分线

高几的没有明确规定,理科生学那些知识时间如下: 函数高一上学期学 解三角函数、三角函数式的变换、三角函数的图象和性质、解三角形都在高一下学期学 平面向量、直线高一下学期学 圆锥曲线高二下学期学

初二数学下册知识点

学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初二数学下册的知识点,希望对大家有所帮助。

初二下册数学知识点归纳北师大版

章分式

1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2、分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3、整数指数幂的加减乘除法

4、分式方程及其解法

第二章反比例函数

1、反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2、反比例函数在实际问题中的应用

第三章勾股定理

1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

初二下册数学知识点

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极、方

初二数学三角形知识点归纳

【直角三角形】

◆备考兵法

1.正确区分勾股定理与其逆定理,掌握常用的勾股数.

2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.

3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.

4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.

5.折叠问题是新中考 热点 之一,在处理折叠问题时,动手作,认真观察,充分发挥即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。空间 想象力 ,注意折叠过程中,线段,角发生的变化,寻找破题思路.

【三角形的重心】

已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

1.重心和三角形3个顶点组成的3个三角形面积相等。

2.重心到三角形3个顶点距离的平方和最小。

3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3

4重心到顶点的距离与重心到对边中点的距离之比为2:1。

5.重心是三角形内到三边距离之积的点。

如果用塞瓦定理证,则极易证三条中线交于一点。

初二数学下册知识点相关 文章 :

★ 初二数学下册知识点人教版

★ 初二数学下册重点知识总结

★ 初二下册数学重三复习点知识点归纳

★ 八年级下册数学知识点归纳

★ 八年级下册数学知识点总结归纳

★ 初二下册数学知识点

★ 初二下数学知识点

★ 八年级下册的数学知识点

初二数学冀教版上册知识点

比较长短:

对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二数学三角形知识点归纳

直角三角形

◆备考兵法

1.正确区分勾股定理与其逆定理,掌握常用的勾股数.

2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.

3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.

4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.

5.折叠问题是新中考 热点 之一,在处理折叠问题时,动手作,认真观察,充分发挥空间 想象力 ,注意折叠过程中,线段,角发生的变化,寻找破题思路.

三角形的重心

已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

1.重心和三角形3个顶点组成的3个三角形面积相等。

2.重心到三角形3个顶点距离的平方和最小。

3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3

4重心到顶点的距离与重心到对边中点的距离之比为★ 八年级下册数学知识点整理2:1。

5.重心是三角形内到三边距离之积的点。

如果用塞瓦定理证,则极易证三条中线交于一点。

八年级 数学知识点

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的 方法 叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

数学 学习方法 技巧

自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能解题、解对题才是学好数学的标志。

自信才能自强

在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做, 其它 的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

初二数学冀教版上册知识点相关 文章 :

★ 冀教版初二数学知识点

★ 冀教版八年级数学上册目录

★ 一年级数学知识点冀教版

★ 初中数学知识点归纳(冀教版)

★ 八年级数学学习方法指导

★ 中小学各学科学习方法总结

★ 初一数学知识点归纳冀教版

★ 八年级学习方法指导

★ 冀教版二年级数学上册复习(2)

★ 初二数学教学论文范文

初一数学基础知识点

讨论:①定义②线的交点三角形的心③性质

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

∴ ∠ABC= ∠DAC- ∠C

七年级数学 知识点

【生活中的轴对称】

1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。

3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。

联系:它们都是图形沿某直线折叠可以相互重合。

2、成轴对称的两个图形一定全等。

3、全等的两个图形不一定成轴对称。

4、对称轴是直线。

5、角平分线的性质

1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。

7、轴对称图形有:

等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。

8、等腰三角形性质:

①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。

9、①“等角对等边”∵∠B=∠C∴AB=AC

②“等边对等角”∵AB=AC∴∠B=∠C

10、角平分线性质:

角平分线上的点到角两边的距离相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。

∵OC垂直平分AB∴AC=BC

12、轴对称的性质

1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。

2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。

3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。

13、镜面对称

1.当物体正对镜面摆放时,镜面会改变它的左右方向;

2.当垂直于镜面摆放时,镜面会改变它的上下方向;

3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;

学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:

(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;

(3)可以把数字左右颠倒,或做简单的轴对称图形;

(4)可以看像的背面;(5)根据前面的结论在头脑中想象。

初一下册数学《三角形》知识点

一、目标与要求

1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点

三角形内角和定理;

对三角形有关概念的了解,能用符号语言表示三条形。

三、难点

三角形内角和定理的推理的过程;

在具体的图形中不重复,且不遗漏地识别所有三角形;

用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架

五、知识点、概念 总结

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

13.多边形的内角:多边形相邻两边组成的角叫做它的内角。

14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

初一 数学学习方法

一预习

对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。

二听讲

这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。

体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。

四作业

认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。

五总结

这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。

如何挑选及处理习题

一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历的考试真题是的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。

二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。

要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的 反思 ,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。

三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。

因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击题,即使错了不后悔。”

初一数学基础知识点相关 文章 :

★ 初中数学基础知识整理归纳

★ 初一数学基础知识有哪些?

★ 初一数学上册知识点

★ 人教版初一数学知识点整理

★ 初中数学基础知识点归纳总结

★ 初一数学上册知识点归纳

★ 初中数学基础知识点总结

★ 初一数学课本知识点总结

★ 初一数学知识点整理

★ 初一数学知识点归纳与学习方法

初三数学主要知识点

说明:

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。

6、一元二次方程根与系数的关系:x1+x2=-b/a,x1x2=c/a.

九年级下册数学知识点

圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

6.与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.切线的性质(重点)

2.切线的判定定理(重点)

3.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角:初中数学复习提纲

内角的一半:初中数学复习提纲(右图)

(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)

六、一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

4.弧长公式

5.弓形面积的计算方法

6.圆柱、圆锥的侧面展开图及相关计算

七、点的轨迹

六条基本轨迹

八、有关作图

1.作三角形的外接圆、内切圆

2.平分已知弧

3.作已知两线段的比例中项

4.等分圆周:4、8;6、3等分

九、重要辅助线

1.作半径

2.见弦往往作弦心距

3.见直径往往作直径上的圆周角

4.切点圆心莫忘连

5.两圆相切公切线(连心线)

6.两圆相交公共弦

初三下册数学知识点 总结

一、锐角三角函数

正弦等于对边比斜边

余弦等于邻边比斜边

正切等于对边比邻边

余切等于邻边比对边

正割等于斜边比邻边

二、三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a都是常数,这种级数称为幂级数.

泰勒展开式(幂级数展开法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方

四、利用三角函数测高

1、解直角三角形的应用

(1)通过解直角三角形能解决实际问题中的很多有关测量问.

如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.

(2)解直角三角形的一般过程是:

①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的,再转化得到实际问题的.

初三数学复习资料

轴对称知识点

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60,

12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60的等腰三角形是等边三角形

有两个角是60的三角形是等边三角形。

13.直角三角形中,30角所对的直角边等于斜边的一半。

不等式

1.掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac

2.比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

3.不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。

初三数学主要知识点相关 文章 :

★ 初三数学知识点考点归纳总结

★ 中考数学最全考点分析主要知识点

★ 初三数学知识点归纳总结

★ 初三数学中考复习重点章节知识点归纳

★ 九年级数学上册重要知识点总结

★ 初三数学知识点总结大全

★ 初三数学知识点整理

★ 初三数学知识点上册总结归纳

★ 初三数学复习知识点总结

锐角三角函数公式 入门 急求解!

★ 初三数学知识点归纳人教版

我告诉你,你们在初中只重心的几条性质:学直角三角形,高中才说锐角三角形!所以你不必知道,不要想太多,这可以证明的!呵呵

蛮有好问

是锐角三角函数,不是锐角三角形函数,也就是α在这里是锐角

这是高中的说法,我现在刚高一,以前我也挺疑惑的。高中的三角函数不只是平面图形了,是在坐标轴中的。是横纵坐标的比。

已经说了是锐角三角形,就一定可以在直角三角形存在这样的角度,那么就可以做一个这样的直角三角形,所以就有斜边、对边了。

人教版九年级数学知识点总结

对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。

九年级数学知识点整理

1.有两条边相等的三角形是等腰三角形。

2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的, 学习方法 ,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

标准与方

极是什么:一组数据中数据与最小数据的叫做极,即极=值-最小值。

计算器——求标准与方的一般步骤:

1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。

2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准”,就可以得到所求数据的标准;

5.标准的平方就是方。

初三数学下册知识点整理

1.解直角三角形

1.1.锐角三角函数

锐角a的正弦、余弦和正切统称∠a的三角函数。

如果∠a是Rt△ABC的一个锐角,则有

1.2.锐角三角函数的计算

1.3.解直角三角形

在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

2.直线与圆的位置关系

2.1.直线与圆的位置关系

当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

直线与圆的位置关系有以下定理:

直线与圆相切的判定定理:

经过半径的外端并且垂直这条半径的直线是圆的切线。

圆的切线性质:

经过切点的半径垂直于圆的切线。

2.2.切线长定理

从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

切线长定理:过圆外一点所作的圆的两条切线长相等。

2.3.三角形的内切圆

与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。

3.三视图与表面展开图

3试试这个:.1.投影

物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

3.2.简单几何体的三视图

物体在正2、二次函数的分类:①y=ax2:顶点坐标:原点;对称轴:y轴;投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

主视图、左视图和俯视图合称三视图。

产生主视图的投影线方向也叫做主视方向。

3.3.由三视图描述几何体

三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

3.4.简单几何体的表面展开图

将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

初三 数学学习方法 技巧

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。我去佛山一中开家长会时,一中的一番话使我感触良多。他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,异那么大,这就是学习主动性问题了。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能解题、解对题才是学好数学的标志。

★ 人教版九年级数学知识点归纳

★ 人教版初三数学知识点

★ 初三数学知识点总结大全

★ 人教版初三数学知识点复习资料备战中考

★ 初三数学学习方法指导与学习方法总结

★ 新人教版初中数学复习资料

★ 初三物理知识点总结归纳(完整版)

★ 初一数学人教版知识点归纳

★ 初一数学知识点人教版

初三数学知识点整理

初三数学知识点整理1 1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

重点知识:

初中数学课,认识正数与负数!新初一的来~

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.

1.概念:数轴上某个数与原点的距离叫做这个数的。

②等于一个正数的数有两个,等于0的数有一个,没有等于负数的数.

③有理数的都是非负数.

2.如果用字母a表示有理数,则数a 要由字母a本身的取值来确定:

①当a是正有理数时,a的是它本身a;

②当a是负有理数时,a的是它的相反数﹣a;

③当a是零时,a的是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

中考数学知识点

1、反比例函数的概念

一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质

反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,

y的取值范围是y0;

②当k>0时,函数图像的两个分支分别

在、三象限。在每个象限内,y

随x 的增大而减小。

①x的取值范围是x0,

y的取值范围是y0;

②当k<0时,函数图像的两个分支分别

在第二、四象限。在每个象限内,y

随x 的增大而增大。

4、反比例函数解析式的确定

确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数的几何意义

设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

(1)△OPA的面积.

(2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

矩形PCEF面积=,平行四边形PDEA面积=

二次函数中考数学知识点

二次函数的解析式有三种形式:

(1)一般式:

(2)顶点式:

(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

注意:抛物线位置由决定.

(1)决定抛物线的开口方向

①开口向上.

②开口向下.

(2)决定抛物线与y轴交点的位置.

①图象与y轴交点在x轴上方.

②图象过原点.

③图象与y轴交点在x轴下方.

(3)决定抛物线对称轴的位置(对称轴:)

①同号对称轴在y轴左侧.

②对称轴是y轴.

③异号对称轴在y轴右侧.

(4)顶点坐标.

(5)决定抛物线与x轴的交点情况.、

①△>0抛物线与x轴有两个不同交点.

②△=0抛物线与x轴有的公共点(相切).

③△<0抛物线与x轴无公共点.

(6)二次函数是否具有、最小值由a判断.

①当a>0时,抛物线有点,函数有最小值.

②当a<0时,抛物线有点,函数有值.

(7)的符号的判定:

表达式,请代值,对应y值定正负;

对称轴,用处多,三种式子相约;

轴两侧判,左同右异中为0;

1的两侧判,左同右异中为0;

-1两侧判,左异右同中为0.

(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。

(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。

(10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;

②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;

③二次函数(经过原点,则。

(11)二次函数的解析式:

①一般式:(,用于已知三点。

②顶点式:,用于已知顶点坐标或最值或对称轴。

(3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。

初三数学知识点整理2

知识点1。概念

把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)

解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到。

(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同。

(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关。

知识点2。比例线段

对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段。

知识点3。相似多边形的性质

相似多边形的性质:相似多边形的对应角相等,对应边的比相等。

解读:(1)正确理解相似多边形的定义,明确“对应”关系。

(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性。

知识点4。相似三角形的概念

对应角相等,对应边之比相等的三角形叫做相似三角形。

解读:(1)相似三角形是相似多边形中的一种;

(2)应结合相似多边形的性质来理解相似三角形;

(3)相似三角形应满足形状一样,但大小可以不同;

(4)相似用“∽”表示,读作“相似于”;

(5)相似三角形的对应边之比叫做相似比。

知识点5。相似三角的判定方法

(1)定义:对应角相等,对应边成比例的两个三角形相似;

(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似。

(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。

(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似。

(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似。

知识点6。相似三角形的性质

(1)对应角相等,对应边的比相等;

(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;

(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方。

(4)射影定理

初三数学知识点整理3

三角形

分类:⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

① 高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和关系:延结法、截余法

⑹证面积关系:将面积表示出来

初三数学知识点整理4

一元一次方程:

①在一个方程中,只含有一个未知数,并且未知数的指数是

1、这样的方1、定义:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:

去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

2、不等式与不等式组

不等式:

①用符号”=“号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:

①能使不(2)有一个角是60°的等腰三角形,其它两个等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

一元一次不等式组:

①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

3、函数

变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:

①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:

①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的'增大而减少。

空间与图形

图形的认识:

1、点,线,面

点,线,面:

①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:

①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

弧,扇形:

②圆可以分割成若干个扇形。

角线:

①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。

①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:

①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:

①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:

①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:

①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

2、相交线与平行线

角:

①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。

②同角或等角的余角/补角相等。

③对顶角相等。

④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

初三数学知识点整理5

重点代数式的有关概念及性质,代数式的运算

☆内容提要☆

一、重要概念

分类:

1.代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

=x,=│x│等。

4.系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5.同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6.根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根

⑴正数a的正的平方根(0与平方根的区别]);

⑵算术平方根与

①联系:都是非负数,=│a│

②区别:│a│中,a为一切实数;中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数

⑴(幂,乘方运算)

⑵零指数:=1(a0)

负整指数:=1/0,p是正整数)

二、运算定律、性质、法则

1.分式的加、减、乘、除、乘方、开方法则

2.分式的性质

⑴基本性质:=0)

⑵符号法则:

⑶繁分式:①定义;②化简方法(两种)

3.整式运算法则(去括号、添括号法则)

4.幂的运算性质:①=②=③=④=⑤

技巧:

5.乘法法则:⑴单⑵单⑶多多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(ab)=

7.除法法则:⑴单⑵多单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

9.算术根的性质:=0,b0,b0)(正用、逆用)

10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.B.C..

11.科学记数法:a10,n是整数=

三、应用举例(略)

四、数式综合运算(略)

初三数学知识点整理6

二元一次方程组

1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。

2、二元一次方程组的解法

(1)代入法

由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

(2)因式分解法

在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

(3)配方法

将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

(4)韦达定理法

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

(5)消常数项法

当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

1、直接方法:

用直接方法解形如(x—m)2=n(n≥0)的方程,其解为x=±m。

直接方法就是平方的逆运算。通常用根号表示其运算结果。

2、配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系数化1:将二次项系数化为1

(3)移项:将常数项移到等号右侧

(4)配方:等号左右两边同时加上一次项系数一半的平方

(5)变形:将等号左边的代数式写成完全平方形式

(6)开方:左右同时方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然后计算判别式△=b2—4ac的值,当b2—4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2—4ac≥0)就可得到方程的根。

代数式

1、代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2、整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3、单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

几个单项式的和,叫做多项式。

①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

4、同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律。