七年级下册数学平面直角坐标系的知识点归纳

★ 2017冀教版七年级数学上册教案

平面直角坐标系中的有关知识点1.定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系画平面直角坐标系时, 轴、y轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同. 2. 各个象限内点的特征:象限:(+,+) 点P(x,y),则x>0,y>0;第二象限:(-,+) 点P(x,y),则x<0,y>0;第三象限:(-,-) 点P(x,y),则x<0,y<0;第四象限:(+,-) 点P(x,y),则x>0,y<0; 在x轴上:(x,0) 点P(x,y),则y=0;在x轴的正半轴:(+,0) 点P(x,y),则x>0,y=0;在x轴的负半轴:(-,0) 点P(x,y),则x<0,y=0;在y轴上:(0,y) 点P(x,y),则x=0;在y轴的正半轴:(0,+) 点P(x,y),则x=0,y>0;在y轴的负半轴:(0,-) 点P(x,y),则x=0,y<0;坐标原点:(0,0) 点P(x,y),则x=0,y=0;3. 点到坐标轴的距离:点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.到坐标原点的距离为 .4.中点与两点间的距离:已知点A(x1,y1),B(x2,y2)则AB= AB的中点P为 5.点的对称:点P(m,n),关于x轴的对称点坐标是(m,-n),关于y轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)6. 平行线:平行于x轴的直线上的点的特征:纵坐标相等;平行于y轴的直线上的点的特征:横坐标相等.7.象限角的平分线:、三象限角平分线上的点横、纵坐标相等,可记作 .点P(a,b)关于、三象限坐标轴夹角平分线的对称点坐标是(b, a)第二、四象限角平分线上的点横纵坐标互为相反数,可记作 点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)8.点的平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点( ,y);将点(x,y)向左平移a个单位长度,可以得到对应点( ,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b).注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移.

七年级下册数学知识点 七年级下册数学知识点归纳图七年级下册数学知识点 七年级下册数学知识点归纳图


七年级下册数学知识点 七年级下册数学知识点归纳图


七年级下册数学知识点 七年级下册数学知识点归纳图


难点:样本的抽取,频数分布直方图的画法。

七年级数学下册知识点泸科版

如果两个角的和为90°(或直角),那么这两个角互为余角;

学习是每个一个学生的职责,而学习的动力是靠自己的梦想,也可以这样说没有自己的梦想就是对自己的一种不的表现,也就和人失走肉没啥两样,只是改变命运,同时知识也不是也不是随意的摘取。要通过自己的努力,要把我自己生命的钥匙。以下是我为您整理的《沪科版七年级上册数学知识点三篇》,供大家学习参考。

1.5.2科学记数法

七年级数学 下册知识点泸科版

单项式与多项式

1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)

2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。

单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

整式

2、单项式或多项式都是整式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

七年级数学下册知识点泸科版

单元有理数

1.1正数和负数

以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4

一个正数的是它的本身;一个负数的是它的相反数;0的是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,大的反而小。

1.3有理数的加减法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把相加。

⑵不相等的饿异号两数相加,取较大的加数的符号,并用较大的减去较小的。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:

减去一个数,等于加这个数的相反数。

a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

有理数乘法法则:

两数相乘,同号得正,异号得负,并把相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用“”

⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2有理数的除法

有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a〃1

b(b≠0)

两数相除,同号得正,异号得负,并把相除。0除以任何一个不等于

0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,求出结果。

1.5有理数的乘方

1.5.1乘方?

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,加减;

⑵同极运算,从左到右进行;

⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字

接近实际数目,但与实际数目还有别的数叫做近似数。

度:一个近似数四舍五入到哪一位,就说到哪一位。

从一个数的左边个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

七年级数学下册知识点泸科版

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:

a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

b.不要漏掉不能合并的项。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

图形的初步认识

一、立体图形与平面图形

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

五、余角和补角

1、如果两个角的和等于90(直角),就说这两个角互为余角。

2、如果两个角的和等于180(平角),就说这两个角互为补角。

3、等角的补角相等。

4、等角的余角相等。

六、相交线

1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、注意:

⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有无数条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

七、平行线

1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、判定两条直线平行的 方法 :

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5、平行线的性质

(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

七年级数学下册知识点泸科版相关 文章 :

★ 沪教版七年级数学知识点总结

★ 初中数学知识点总结(沪科版)

★ 初一数学下册知识点

★ 新沪科版七年级数学下课本目录

★ 初一数学下册知识点归纳总结

★ 初中数学七年级下册知识点提纲

★ 初一下期数学知识点总结

★ 七年级下册数学的知识点

★ 初一数学下册基本知识点总结

★ 2017年七年级下册数学知识点

七年级数学下册二元一次方程组的应用知识点

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

知识点一:列方程组解应用题的基本思想

★ 初一上册数学知识点归纳整理

列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.

知识点二:列方程组解应用题中常用的基本等量关系

1.行程问题:

(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程=开始时两者相距的路程;

(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:

①船在静水中的速度+水速=船的'顺水速度;

②船在静水中的速度-水速=船的逆水速度;

③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量

3.商品销售利润问题:

(1)利润=售价-成本(进价);

(2)利润=成本(进价)×利润率;

(3)标价=成本(进价)×(1+利润率);

(4)实际售价=标价×打折率;

注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)

4.储蓄问题:

(1)基本概念

①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

(2)基本关系式

①利息=本金×利率×期数

②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)

③利息税=利息×利息税率=本金×利率×期数×利息税率。

④税后利息=利息×(1-利息税率)

⑤年利率=月利率×12

注意:免税利息=利息

5.配套问题:

解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。

6.增长率问题:

解这类问题的基本等量关系式是:

原量×(1+增长率)=增长后的量;

原量×(1-减少率)=减少后的量.

7.和倍分问题:

解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.

8.数字问题:

解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字

9.浓度问题: 溶液质量×浓度=溶质质量.

10.几何问题: 解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式

11.年龄问题: 解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄是永远不会变的

12.优化方案问题:

在解决问题时,常常需合理安排。需要从几种方案中,选择方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出方案。

注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出方案。

知识点三:列二元一次方程组解应用题的一般步骤

利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:

1.审题:弄清题意及题目中的数量关系;

2.设未知数:可直接设元,也可间接设元;

4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;

5.解所列的方程组,并检验解的正确性;6.写出.

要点诠释:

(1)解实际应用问题必须写“答”,而且在写前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;

(2)“设”、“答”两步,都要写清单位名称;

(3)一般来说,设几个未知数就应该列出几个方程并组成方程组。

(4)列方程组解应用题应注意的问题

①弄清各种题型中基本量之间的关系;

②审题时,注意从文字,图表中获得有关信息;

③注意用方程组解应用题的过程中单位的书写,设未知数和写都要带单位,列方程组与解方程组时,不要带单位;

④正确书写速度单位,避免与路程单位混淆;

⑤在寻找等量关系时,应注意挖掘隐含的条件;

⑥列方程组解应用题一定要注意检验。

七年级数学上册、下册重要知识点总结

概率

初一数学上册主要包括四个章节的内容;下册主要包括相六章内容。为帮助大家更好地掌握 七年级数学 每个章节的重要内容,我整理了一些知识点以供学习复习参考!

七年级数学上册知识点:章 有理数

一、知识框架

二.知识概念

1.有理数:

(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.

4.:

(1)正数的是其本身,0的是0,负数的是它的相反数;注意:的意义是数轴上表示某数的点离开原点的距离;

(2) 可表示为: 或 ;的问题经常分类讨论;

5.有理数比大小:(1)正数的越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,大的反而小;(n边行内角和公式(n—2)5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把相加;

(2)异号两数相加,取较大的符号,并用较大的减去较小的;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的位:一个近似数,四舍五入到那一位,就说这个近似数的到那一位.

17.有效数字:从左边个不为零的数字起,到的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,加减.

本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、的意义所在。重点利用有理数的运算法则解决实际问题.

体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

七年级数学上册知识点:第二章 整式的加减

一.知识框架二.知识概念

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数。

通过本章学习,应使学生达到以下学习目标:

1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2. 理解同类项概念,掌握合并同类项的 方法 ,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

七年级数学上册知识点:第三章 一元一次方程

本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

一.知识框架

二.知识概念

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).

3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).

4.列一元一次方程解应用题:

(1)读题分析法:………… 多用于“和,,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法: ………… 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

11.列方程解应用题的常用公式:

(1)行程问题: 距离=速度·时间 ;

(2)工程问题: 工作量=工效·工时 ;

(3)比率问题: 部分=全体·比率 ;

(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题: 售价=定价·折· ,利润=售价-成本, ;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,

S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.

七年级数学上册知识点:第四章 图形的认识初步

一、知识框架

本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.

二、本章书涉及的数学思想:

1.分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。

2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

3.图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。

>>>下一页更多精彩“七年级数学下册知识点”

七年级下册数学平面直角坐标系的知识点归纳

(4)一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。

平面直角坐标系中的有关知识点1.定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系画平面直角坐标系时,

11.三角形外角的性质

轴、y轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同。

2.

各个象限内点的特征:象限:(+,+)

点P(x,y),则x<0,y>0;第三象限:(-,-)

点P(x,y),则x<0,y<0;第四象限:(+,-)

点P(x,y),则x>0,y<0;

在x轴上:(x,0)

点P(x,y),则y=0;在x轴的正半轴:(+,0)

点P(x,y),则x>0,y=0;在x轴的负半轴:(-,0)

点P(x,y),则x<0,y=0;在y轴上:(0,y)

点P(x,y),则x=0;在y轴的正半轴:(0,+)

点P(x,y),则x=0,y>0;在y轴的负半轴:(0,-)

点P(x,y),则x=0,y<0;坐标原点:(0,0)

点P(x,y),则x=0,y=0;3.

点到坐标轴的距离:点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|。到坐标原点的距离为

。4.中点与两点间的距离:已知点A(x1,y1),B(x2,y2)则AB=

AB的中点P为

5.点的对称:点P(m,n),关于x轴的对称点坐标是(m,-n),关于y轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)6.

平行线:平行于x轴的直线上的点的特征:纵坐标相等;平行于y轴的直线上的点的特征:横坐标相等。7.象限角的平分线:、三象限角平分线上的点横、纵坐标相等,可记作

。点P(a,b)关于、三象限坐标轴夹角平分线的对称点坐标是(b,

a)第二、四象限角平分线上的点横纵坐标互为相反数,可记作

点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)8.点的平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(

,y);将点(x,y)向左平移a个单位长度,可以得到对应点(

,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

冀教版七年级数学知识点

1.2.2数轴

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。

初一下册数学《三角形》知识点

一、目标与要求

1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点

三角形内角和定理;

对三角形有关概念的了解,能用符号语言表示三条形。

三、难点

三角形内角和定理的推理的过程;

在具体的图形中不重复,且不遗漏地识别所有三角形;

用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架

五、知识点、概念 总结

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的小于第三边。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

初一下学期数学知识点

相交线与平行线

1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是 邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角, 与互为邻补角。+=180°;+=180°;+=180°; +=180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=; =。

5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当a⊥b时,====90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样 的两个角叫同位角。图3中,共有对同位角:与是同位角; 与是同位角;与是同位角;与是同位角。

②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b, 则=;=;=;=。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则=;=。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+=180°; +=180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果= 或=或=或=,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b。

判定3:同旁内角互补,两直线平行。如图5所示,如果+=180°; +=180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

七年级数学复习知识点

【知识点一】实数的分类

1、按定义分类:2.按性质符号分类:

注:0既不是正数也不是负数.

【知识点二】实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

2.|a|≥0.

3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.

5.立方根

如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。负数有一个负的立方根;零的立方根是零.

【知识点三】实数与数轴

数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

【知识点四】实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,较大的那个正数大;两个负数;大的反而小.

冀教版七年级数学知识点相关 文章 :

★ 初一数学知识点归纳冀教版

★ 初中数学知识点归纳(冀教版)

★ 初二数学冀教版知识点

★ 一年级数学知识点冀教版

★ 七年级下数学的思维导图

★ 冀教版七年级数学上目录

★ 初一数学上册期末试卷冀教版

★ 冀教版七年级上册数学期末试卷

★ 冀教版七年级下学期期末数学试题(2)

七年级数学单元知识点

1、单项式和多项式统称为整式。

各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。

初一下册数学知识点 总结

相交线

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个∵∠1=53°角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的.垂线,它们的交点叫做垂足。

平行线及其判定

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的性质

性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

平移

向左平移a个单位长度,可以得到对应点(x-a,y)

向上平移b个单位长度,可以得到对应点(x,y+b)

向下平移b个单位长度,可以得到对应点(x,y-b)

初一下册数学知识点

多项式除以单项式

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

2、单项式或多项式都是整式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

七年级 数学学习方法 技巧

1、做好预习:

单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

2、认真听课:

3、认真解题:

课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的 笔记本 ,回顾学习内容,加深理解,强化记忆。

4、及时纠错:

课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

5、学会总结:

冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

6、学会管理:

管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

七年级数学单元知识点相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学单元知识点归纳

★ 初中七年级数学知识点归纳整理

★ 初一上册数学单元知识点

★ 七年级数学知识点整理大全

★ 七年级数学上册知识点汇总

★ 七年级数学知识点归纳

★ 七年级上册数学知识点总结三篇

★ 七年级数学知识点整理

初一(七年级)下册数学知识点:平面直角坐标系

平面直角坐标系是初一数学下学期学习的第三章内容,平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。以下是我带来的初一(七年级)下册数学知识点:平面直角坐标系,欢迎阅读。

一、目标与要求

1.解有序数对的应用意义,了解平面上确定点的常用方法。

2.培养学生用数学的意识,激发学生的学习兴趣。

3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

4.发展学生的形象思维能力,和数形结合的意识。

5.坐标表示平移体现了平面直角坐标系在数学中的应用。

二、重点

掌握坐标变化与图形平移的关系;

有序数对及平面内确定点的方法。

三、难点

利用坐标变化与图形平移的关系解决实际问题;

利用有序数对表示平面内的点。

四、知识框架

五、知识点、概念总结

1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的'含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。

2.平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,竖直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O 称为直角坐标系的原点。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6.特殊位置的点的坐标的特点

(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

(4)点到轴及原点的距离。

点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;

7.在平面直角坐标系中对称点的特点

(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)

(2)关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)

(3)关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)

8.各象限内和坐标轴上的点和坐标的规律

象限:(+,+)正正

第二象限:(-,+)负正

第三象限:(-,-)负负

第四象限:(+,-)正负

x轴正方向:(+,0)

x轴负方向:(-,0)

y轴正方向:(0,+)

y轴负方向:(0,-)

x轴上的点的纵坐标为0,y轴上的点的横坐标为0.

原点:(0,0)

注:以数对形式(x,y)表示的坐标系中的点(如2,-4),"2"是x轴坐标,"-4"是y轴坐标。

9.坐标方法的简单应用:

(1)用坐标表示地理位置

(2)用坐标1、C表示平移

10.平面直角坐标系其他公式

(1)坐标平面内的点与有序实数一一对应。

(2) 一三象限角平分线上的点横纵坐标相等。

(3)二四象限角平分线上的点横纵坐标互为相反数。

(5)y轴上的点,横坐标为0.

(6)x轴上的点,纵坐标为0.

(7)坐标轴上的点不属于任何象限。

六、经典例题

例1一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,如果A1求坐标为(3,0),求点 A5的坐标。

例2如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为( )

A、(0,3) B、(2,3) C、(3,2) D、(3,0)

例3如图2,根据坐标平面内点的位置,写出以下各点的坐标:

A( ),B( ),C( )。

例4如图,面积为12cm2的△ABC向x轴正方向平移至△DEF的位置,相应的坐标如图所示(a,b为常数),

15、命题:判断一件事情的语句叫命题。(1)、求点D、E的坐标

(2)、求四边形ACED的面积。

例5过两点A(3,4),B(-2,4)作直线AB,则直线AB( )

A、经过原点 B、平行于y轴

C、平行于x轴 D、以上说法都不对

七年级数学下册思维导图 | 初一数学知识整理

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

无论到了什么阶段,数学都是非常重要的一门课程,有道是学好数理化,走(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。遍天下都不怕!学好任何一门课程对于我们的帮助都是极大的,那么如何将思维导图跟这些学科结合起来呢?思维导图是现在比较火的一个工具,很多人在工作的时候都会使用,那么如何应用在初中的各个学科中呢?下面我们就一起来看一下七年级数学下册的思维导图。

七年级数学上册图形的初步认识(由知犀思维导图整理)

七年级数学下册不等式与不等式组(由知犀思维导图整理)

七年级数学下册图形的平移与旋转(由知犀思维导图整理)

七年级数学下册相交线与平行线(由知犀思维导图整理)

七年级的数学思维导图整理是不是非常简单?其实数学这门课程只要你能够理清楚各个知识点,找到问题点所在,随后就能够轻松解决掉了,所以思维导图还是非常契合数学这门学科的。思维导图不仅能够应用在学习上,工作、生活中也都是可以应用的。好了,七年级数学的思维导图整理就到这里了,希望可以帮助到你~

七年级下册数学第八章知识点

1、二元一次方程:含有两个未知数,把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。

2、二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3、二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5、消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

归纳:基本思路:“消元”——把“二元”变为“一元”。

6、代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

7、加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

8、教科书中没有的几种解法

(1)加减—代入混合使用的方法:

特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。

特点:两方程中都含有相同的代数式,换元后可简化方程也是主要原因。

(3)设参数法

9、列方程(组)解应用题步骤:

(1)审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

(2)设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

(3)用含未知数的代数式表示相关的量。

(4)寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

(5)解方程及检验。

(6)。

如何学好初一数学

一定要做好预习

初一学生想要学好数学,一定要学会提前预习。将老师要将的内容提前预习一下,对于自己在预习中会出现的不理解的概念或者不懂的知识点,要做好标记和记录,这样初一学生在数学课堂上才会注意力集中,这样在听课的过程中才能够跟上老师的讲课思路,自己的`思维才能够集中。带着问题去听老师讲课,这样会将被动的学习变为主动,可以有效的提高初一新生在数学课堂上的学习效率。

课下要学会及时复习

当初一学生在课上认真听讲后,那么对于初一数学的学习课后也是需要及时复习的。当老师讲完初一数学一节课的内容之后,初中生一定要听明白,不要留下任何的疑点,有不懂的地方要及时的问同学或者老师。这样在课后复习的时候才能够自己的去完成作业。每一次的初一数学课后,初中生都应该将这节课学习的知识点进行归纳和整理。

初中数学直线的性质

(1)直线公理:经过两个点有一条直线,并且只有一条直线。它(2)换元法可以简单地说成:过两点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

初中七年级数学知识点总结

1.3.1有理数的加法

天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。

初一数学知识点

1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

5.不等式解集的表示 方法 :

(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)

(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性质:

(1)如果x>y,那么yy;(对称性)

(2)如果x>y,y>z;那么x>z;(传递性)

(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

(7)如果x>y>0,m>n>0,那么xm>yn

(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

初一下册数学知识点

1.数据的整理:我们利用划记法整理数据,如下图所示,

2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。如下图所示:

3.全面调查:考察全体对象的调查方一般地,数轴上表示数a的点与原点的距离叫做数a的。式叫做全面调查。

4.抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

5.抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。

概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。

6.总体:要考察的全体对象称为总体。

7.个体:组成总体的每一个考察对象称为个体。

8.样本:被抽取的所有个体组成一个样本。为了使样本能够正确反映总体情况,对总体要有明确的规定;总体内所有观察单位必须是同质的;在抽取样本的过程中,必须遵守随机化原则;样本的观察单位还要有足够的数量。又称“子样”。按照一定的抽样规则从总体中取出的一部分个体。

9.样本容量:样本中个体的数目称为样本容量。

10.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。也称次数。在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

如有一组测量数据,数据的总个数N=148最小的测量值Xmin=0.03,的测量值Xmax=31.67,按组距为△x=3.000将148个数据分为11组,其中分布在15.05~18.05范围内的数据有26个,则称该数据组的频数为26.

11.频率:频数与数据总数的比为频率。在相同的条件下,进行了n次试验,在这n次试验中,A发生的次数n(A)称为A发生的频数。比值n(A)/n称为A发生的频率,并记为fn(A).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。

(1)当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是A的概率.这种“频率稳定性”也就是通常所说的统计规律性。

(2)频率不等同于概率.由伯努利大数定理,当n趋向于无穷大的时候,频率fn(A)在一定意义下接近于概率P(A).频率公式:频数总体数量=频率

12.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的叫做组距。

初一数学方法技巧

1.请概括的说一下学习的方法

曰:“像做其他事一样,学习数学要研究方法。我为你们的方法是:超前学习,展开联想,多做 总结 ,找出合情合理。

2.请谈谈超前学习的好处

曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。

3.请谈谈联想与总结

曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

4.那么我们怎样预习呢?

曰:“先 说说 学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。

(2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

(3)对于例题及习题的处理见上面的(2)及下面的第五条。

初中七年级数学知识点总结相关 文章 :

★ 初中七年级数学知识点归纳整理

★ 七年级数学知识点整理大全

★ 初一数学课本知识点总结

★ 七年级数学知识点总结

★ 人教版初一数学知识点整理

★ 初一数学上册知识点归纳

★ 初中数学知识点整理:

★ 初中数学知识点总结大全

★ 七年级下数学知识点总结

★ 初一数学知识点归纳与学习方法