糖异生的“三个能量障碍”及克服障碍需要的酶分别是什么?

23-磷酸甘油醛21,3-二磷酸甘油酸 NAD+ 23或22(详见)

糖异生糖异生(Gluconeogenesis gluco-指糖, neogenesis是希腊语 νεογ?ννηση, neojénnissi - 重新生成):由简单的非糖前体(乳酸、甘油、生糖氨基酸等)转变为糖(葡萄糖或糖原)的过程。糖异生不是糖酵解的简单逆转。虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。糖异生保证了机体的血糖水平处于正常水平。糖异生的主要器官是肝。肾在正常情况下糖异生能力只有肝的十分之一,但长期饥饿时肾糖异生能力可大为增强。

丙酮酸羧化酶 丙酮酸羧化酶的变构激活剂丙酮酸羧化酶 丙酮酸羧化酶的变构激活剂


丙酮酸羧化酶 丙酮酸羧化酶的变构激活剂


途径:

当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。

这三步反应都是强放热反应,它们分别是:

2 6磷酸果糖经磷酸果糖激酶催化生成1,6二磷酸果糖 ΔG= -22.2 kJ/mol

3 磷酸烯醇式丙酮酸经丙酮酸激酶生成丙酮酸 ΔG= -16.7 kJ/mol

这三步反应会这样被绕过

1 葡萄糖6磷酸酶催化6磷酸葡萄糖生成葡萄糖

2 果糖1,6二磷酸酶催化1,6二磷酸果糖生成6磷酸果糖。

3 丙酮酸在一元羧酸转运酶的帮助下进入线粒体,在丙酮酸羧化酶的催化下,消耗一两个事实:分子ATP,生成草酰乙酸。草酰乙酸不能通过线粒体膜。在苹果酸-天冬氨酸循环里草酰乙酸通过了线粒体膜之后,在磷酸烯醇式丙酮酸羧化激酶的帮助下成为磷酸烯醇式丙酮酸。反应消耗一分子GTP。

能量消耗

这六分子ATP/GTP是在三步反应里面被消耗的,而生成一分子六碳化合物要重复这过程一次,所以总的能量消耗是3×2=6:

1 丙酮酸在丙(1)、 乙酰CoA+草酰乙酸→柠檬酸酮酸羧化酶的催化下,消耗一分子ATP,生成草酰乙酸。

2 草酰乙酸在磷酸烯醇式丙酮酸羧化激酶的帮助下成为磷酸烯醇式丙酮酸。反应消耗一分子GTP。

3 3磷酸甘油醛在磷酸甘油醛激酶的帮助下,消耗一分子ATP生成1,3二磷酸甘油酸。注意,这一反应是可逆的。

糖异生的关键酶是

3、磷酸戊糖途径

正确:PEP作为重要中间产物,参与糖酵解的一步反应,脱去磷酸基后转化为丙酮酸。C(二)糖有氧氧化的生理意义

解析:糖原分解的关键酶是磷酸化酶

。糖异生需由4个关键酶,即丙酮酸羧化酶、PEP羧激酶、果糖双磷酸酶-1和葡萄糖-6-磷酸激酶

。肉碱酯酰转移酶Ⅰ是脂肪酸β氧化的限速酶,其活性高低控制着脂酰CoA进入线粒体氧化的速度

PEP是什么意思

乙酰

全称磷酸烯醇式丙酮酸(PEP)是一种在生命活动中非常重要的化学物质,参与多种生物化学过程。无论在动物界还是植物界,无论在细胞呼吸还是在光合作用,PEP都默默发挥着作用。

此外,还需要CoA、Mg2+作为辅因子。这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。

细胞呼丙酮酸脱氢酶激酶(EA)(可被ATP激活)吸

光合作用

在C4植物中,PEP在磷酸烯醇式丙酮酸羧化酶(PEP羧化酶)的作用下固定CO2,并转化为草酰乙酸。这一途径被称为C4途径。

丙酮酸羧化酶催化丙酮酸转变为草酰乙酸。

④呼吸链酸化 (NADH-----ATP)

当乙酰-CoA的生成速度大于它进入三羧酸循环的速度时,乙酰-CoA就会积累。积累的乙酰-CoA可以激活丙酮酸羧化酶,使丙酮酸直接转化为草酰乙酸。新合成的草酰乙酸可以进入三羧酸循环,也可以进入糖异生途径。当细胞内能荷较高时草酰乙酸主要进入糖异生途径,这样不断消耗丙酮酸,控制了乙酰-CoA的来源。当细胞能荷较低时,草酰由于PEP羧化酶固定CO2的效率远高于Rubisco,存在C4途径的植物更能适应高温,低CO2等恶劣环境,在亚热带和热带地区广泛分布。乙酸进入三羧磷酸二羟丙酮+NADH+H+→3-磷酸甘油+NAD+酸循环,草酰乙酸增多加快了乙酰-CoA进入三羧酸循环的速度。所以不管草酰乙酸的去向如何,最终效应都是使体内的乙酰-CoA趋于平衡。

丙酮酸是怎样进行三羧酸循环的?什么是三羧酸循环?

(5)底物磷酸化生成atp?

柠檬酸循环(citric acid cycle):也称为三羧酸循环(tricarboxylic acid cycle,TCA),Krebs循环。是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。

乙酰coa进入由一连串反应构成的循环体系,被氧化生成h2o和co2。由于这个循环反应开始于乙酰coa与草酰乙酸(oxaloacetate)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citric acid cycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。 其详细过程如下:?

(1)乙酰coa进入三羧酸循环?

乙酰coa具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先从ch3co基上除去一个h+,生成的阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰coa中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthetase)催化,是很强的放能反应。

由草酰乙酸和乙酰coa合成柠檬酸是三羧酸循环的重要调,柠檬酸合成酶是一个变构酶,atp是柠檬酸合成酶的变构,此外,α-酮戊二酸、nadh能变构抑制其活性,长链脂酰coa也可抑制它的活性,amp可对抗atp的抑制而起激活作用。?

(2)异柠檬酸形成?

柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。

此反应是不可逆的,是三羧酸循环中的限速步骤,adp是异柠檬酸脱氢酶的激活剂,而atp,nadh是此酶的。?

(4)第二次氧化脱羧?

在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰coa、nadh+h+和co2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α?氧化脱羧,氧化产生的能量中一部分储存于琥珀酰coa的高能硫酯键中。?

α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、nad+、fad)组成。?

此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受atp、gtp、naph和琥珀酰coa抑制,但其不受磷酸化/去磷酸化的调控。?

在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰coa的硫酯键水解,释放的自由能用于合成gtp,在细菌和高等生物可直接生成atp,在哺乳动物中,先生成gtp,再生成atp,此时,琥珀酰coa生成琥珀酸和辅酶a。?

琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸氧化成为延胡索酸。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的fad,来自琥珀酸的电子通过fad和铁硫中心,然后进入电子传递链到o2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。?

(7)延胡索酸的水化?

延胡索酸酶仅对延胡索酸的反式双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。?

(8)草酰乙酸再生?

在苹果酸脱氢酶(malic deh在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinate)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α?ketoglutarate)、nadh和co2,此反应为β-氧化脱羧,此酶需要mn2+作为激活剂。?ydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),nad+是脱氢酶的辅酶,接受氢成为nadh+h+(图4-5)。?

三羧酸循环中间物的的回补:在TCA循环中,有些中间产物是合成其它物质的前体,如卟啉的主要碳原子来自琥珀酰CoA,Glu、Asp可以从α-酮戊二酸和草酰乙酸衍生而成,一旦草酰乙酸浓度下降,则会影响TCA循环,因此这些中间产物必须不断补充,以维持TCA循环。三羰酸循环总结:?

coa+3nadh++fad+gdp+pi+2h2o?—→2co2+3nadh+fadh2+gtp+3h+ +coash??

①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β?氧化脱羧,辅酶是nad+,它们先使底物脱氢生成草酰琥珀酸,然后在mn2+或mg2+的协同下,脱去羧基,生成α-酮戊二酸。

α-酮戊二酸脱氢酶系所催化的α?氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。?

应当指出,通过脱羧作用生成co2,是机体内产生co2的普遍规律,由此可见,机体co2的生成与体外燃烧生成CO2的过程截然不同。?

②三羧酸循环的四次脱氢,其中三对氢原子以nad+为受氢体,一对以fad为受氢体,分别还原生成nadh+h+和fadh2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成atp,凡nadh+h+参与的递氢体系,每2h氧化成一分子h2o,生成3分子atp,而fadh2参与的递氢体系则生成2分子atp,再加上三羧酸循环中有一次底物磷酸化产生一分子atp,那么,一分子ch2co?scoa参与三羧酸循环,直至循环终末共生成12分子atp。?

③乙酰coa中乙酰基的碳原子,乙酰coa进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。

④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。?

例如 草楚酰乙酸——→天门冬氨酸

α-酮戊二酸——→谷氨酸

其中丙酮酸羧化酶催化的生成草酰乙酸的反应最为重要。?

因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。?

三羧酸循环中生成 的苹果酸和草酰乙酸也可以脱羧生成丙酮酸,再参与合成许多其他物质或进一步氧化。?

2.三羧酸循环是糖,脂肪和蛋白质三种主要有机物在体内氧化的共同代谢途径,三羧酸循环的起始物乙酰辅酶a,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。?

3.三羧酸循环是体内三种主要有机物互变的联结机构,因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物分解代谢的最终共同途径,而且也是它们互变的联络机构。?

(三)糖有氧氧化的调节?

如上所述糖有氧氧化分为两个阶段,阶段糖酵解途径的调节在糖酵解部分已探讨过,下面主要讨论第二阶段丙酸酸氧化脱羧生成乙酰coa并进入三羧酸循环的一系列反应的调节。丙酮酸脱氢酶复合体、柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体是这一过程的限速酶。?

对三羧酸循环中柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶的调节,主要通过产物的反馈抑制来实现的,而三羧酸循环是机体产能的主要方式。因此atp/adp与nadh/nad+两者的比值是其主要调节物。atp/adp比值升高,抑制柠檬酸合成酶和异柠檬酶脱氢酶活性,反之atp/adp比值下降可激活上述两个酶。nadh/nad+比值升高抑制柠檬酸合成酶和α-酮戊二酸脱氢酶活性,除上述atp/adp与nadh/nad+之外其它一些代谢产物对酶的活性也有影响,如柠檬酸抑制柠檬酸合成酶活性,而琥珀酰coa抑制α-酮戊二酸脱氢酶活性。总之,组织中代谢产物决定循环反应的速度,以便调节机体atp和nadh浓度,保证机体能量供给。?

磷酸烯醇式丙酮酸羧化酶的介绍

(1)丙酮酸脱羧形成-TPP

磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvate carboxylase, PEPC)为催化磷酸烯醇式丙酮酸与二氧化碳反应生成草酰乙酸呈不可逆反应的酶。在植物和细菌中广泛存在,在动物及丝状霉菌中缺乏此酶。在植物的叶绿体和细菌的可溶性分级第三阶段 2异柠檬酸2α-酮戊二酸 NAD+ 23沉淀中存在。大肠杆菌中的酶分子量约36万的四聚体,可受很多因素的影响,例如可为乙酰辅酶A活化,可受天门冬氨酸抑制。此酶是变构酶,6) TCA的回补反应主要功能为供给三羧酸循环以草酰乙酸,另外也与C4植物光合二氧化碳固定反应(C4二羧酸循环)及景天科植物的苹果酸形成(景天酸代谢)等有关。

什么是C4植物??

丙酮酸脱氢酶复合体受别位调控也受化学修饰调控,该酶复合体受它的催化产物atp、乙酰coa和nadh有力的抑制,这种别位抑制可被长链脂肪酸所增强,当进入三羧酸循环的乙酰coa减少,而amp、辅酶a和nad+堆积,酶复合体就被别位激活,除上述别位调节,在脊椎动物还有第二层次的调节,即酶蛋白的化学修饰,pdh含有两个亚基,其中一个亚基上特定的一个丝氨酸残基经磷酸化后,酶活性就受抑制,脱磷酸化活性就恢复,磷酸化-脱磷酸化作用是由特异的磷酸激酶和磷酸蛋白磷酸酶分别催化的,它们实际上也是丙酮酸酶复合体的组成,即前已述及的调节蛋白,激酶受atp别位激活,当atp高时,pdh就磷酸化而被激活,当atp浓度下降,激酶活性也降低,而磷酸酶除去pdh上磷酸,pdh又被激活了。?

植物与植物的比较:

一、叶片的显微结构——重点比较维管束鞘细胞结构

C4植物叶片的维管束薄壁细胞较大,其中含有许多较大的叶绿体,叶绿体没有基粒或基粒发育不良;维管束鞘的外侧密接一层成环状或近于环状排列的叶肉细胞,组成了“花环型”结构。这种结构是C4植物叶片所特有的特征。叶肉细胞内的叶绿体数目少,个体小,有基粒。

C3植物的维管束鞘薄壁细胞较小,不含或很少叶绿体,没有“花环型”结构,维管束鞘周围的叶肉细胞排列松散生物素。

二、淀粉粒形成的场所

三、在生理上,C4植物一般比C3植物具有较强的光合作用,这是与C4植物的磷酸烯醇式丙酮酸羧化酶活性较强,光呼吸很弱有关。

卡尔文循环的CO2固定是通过核酮糖二磷酸羧化酶的作用来实现的,C4途径的CO2固定是由磷酸烯醇式丙酮酸羧化酶催化来完成的。两种酶都可使CO2固定。但它们对CO2的亲和力却异很大。试验证明,C4植物的磷酸烯醇式丙酮酸羧化酶的活性比C3植物的强60倍,因此,C4植物的光合速率比C3植物快许多,尤其是在二氧化碳浓度低的环境下,相更是悬殊。由于磷酸烯醇式丙酮酸羧化酶对CO2的亲和力大,所以,C4植物能够利用低浓度的二氧化碳,而C3植物不能。

由于C4植物能利用低浓度的CO2,当外界干旱气孔关闭时,C4植物就能利用细胞间隙里的含量低的CO2,继续生长,C3植物就没有这种本领。所以,在干旱环境中C4植物生长比C3植物好。1.三羧酸循环是机体获取能量的主要方式。1个分子葡萄糖经无氧酵解仅净生成2个分子atp,而有氧氧化可净生成38个atp,其中三羧酸循环生成24个atp,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于atp分子中,因此能的利用率也很高。?

C4植物的磷酸烯醇式丙酮酸羧化酶活性较强,对CO2的亲和力很大,这种酶就起一个“二氧化碳泵”的作用,把外界CO2“压”进维管束鞘薄壁细胞中去,增加维管束鞘薄壁细胞的CO2。所以, 植物在较低浓度时光合速率高于植物。

与植物相比,植物二氧化碳饱和点低,而光饱和点高,光合效率高,这是判断植物的标准之一。植物是通过途径同化碳的植物,它同时具备和两条途径,途径本身不能将还原成糖,只能改善的供应,是一种辅助系统。从下图中可知,植物A的光补偿点(即在光照下,植物光合作用吸收的量与呼吸作用释放的量达到动态平衡时外界环境中的浓度)高,它是植物。植物B是植物。

综合上述各点,可知C4植物的光呼吸低于C3植物。C3植物的光呼吸很明显,故亦称为光呼吸植物或高光呼吸植物;C4植物的光呼吸很低,几乎测量不出,故亦称为非光呼吸植物或低光呼吸植物。水稻、小麦等C3植物的光呼吸显著,通过光呼吸耗损光合新形成有机物的二分之一,而高粱、玉米、甘蔗等C4植物的光呼吸消耗很少,只占光合新形成有机物的百分之二至五,甚至更少。

哪一个不是糖异生途径的关键酶

从两分子丙酮酸开始,最终合成一分子葡萄糖,需要消耗6分子ATP/GTP。相比糖酵解过程能净产生2ATP,糖异生是耗能的过程。

糖异生的关键酶有:

1 葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5 kJ/mol

丙酮酸羧化酶、烯醇式丙酮酸羧激酶、果糖-1,6-磷酸酶、葡萄糖-6-磷酸酶;糖异生又称为葡糖异生。由简单的非糖前体(乳酸、甘油、生糖氨基酸等)转变为糖(葡萄糖或糖原)的过程,糖异生不是糖酵解的简单逆转。

虽然由丙酮酸开始的糖异生利用了糖酵解中的七步近似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应,糖异生保证了机体的血糖水平处于正常水平。

糖异生:由非糖物质转变为葡萄糖的过程称为糖异生,是体内单糖生物合成的途6-磷酸果糖1,6双磷酸果糖 -1径,肝是糖异生的主要器官,长期饥饿、酸中毒时肾的异生作用增强。

糖异生的途径基本上是糖酵解的逆向过程,但不是可逆过程。酵解过程中三个关键酶催化的反应是不可逆的,故需通过糖异生的4个关键酶(葡萄糖-6-磷酸酶、果糖-1,6-二磷酸酶、丙酮酸羧化酶、磷酸烯醇式丙酮酸激酶)绕过糖酵解的三个能障生成葡萄糖。

其生理意义是:作为补充血糖的重要来源,以维持血糖水平恒定;防止乳酸中毒;协助氨基酸代谢。

磷酸烯醇式丙酮酸羧化酶和羧激酶是一种酶吗?

以上内容参考

不是一种酶。羧激酶是使草酰乙酸脱梭加磷酸化变成磷酸烯醇式丙酮酸的。

第二阶段:磷酸戊糖分子重排,产生不同碳链长度的磷酸单糖

酶(enzyme)是由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质或RNA。酶的催化作用有赖于酶分子的一级结构及空间结构的完整。若酶分子变性或亚基解聚均可导致酶活性丧失。酶属生物大分子,分子质量至少在1万以上,大的可达百万。

反应 酶 ATP消耗 产生ATP方式 ATP数量 合计

酶是一类极为重要的生物催化剂。由于酶的作用,生物体内的化学反应在极为温和的条件下也能高效和特异地进行。

随着人们对酶分子的结构与功能、酶促反应动力学等研究的深入和发展,逐步形成酶学(enzymology)这一学科。

酶的化学本质是蛋白质或RNA,因此它也具有一级、二级、,乃至四级结构。按其分子组成的不同,可分为单纯酶和结合酶。

丙酮酸如何生成PEP?

①用和氟化物抑制糖酵解(磷酸甘油醛脱氢酶)发现Glc的消耗并不因此而受影响,证明葡萄糖还有其它的分解途径

丙酮酸

在丙C4植物通过磷酸烯醇式丙酮酸固定二氧化碳的反应是在叶肉细胞中进行的,生成的四碳双羧酸转移到维管束鞘薄壁细胞中,放出二氧化碳,参与卡尔文循环,形成糖类,所以甘蔗、玉米等C4植物进行光合作用时,只有维管束鞘薄壁细胞形成淀粉,在叶肉细胞中没有淀粉。而水稻等C3植物由于叶肉细胞含有叶绿体,整个光合过程都是在叶肉细胞里进行,淀粉亦只是积累在叶肉细胞中,维管束鞘薄壁细胞不积存淀粉。酮酸羧化酶

草酰乙酸

,该酶的辅酶是

,然后草酰乙酸在PEP3个NADH、1个FADH2进入呼吸链羧激酶的作用下消耗GTP生成PEP.

为什么草酰乙酸可以生成丙酮酸呢?

2磷酸烯醇式丙酮酸2丙酮酸 21

糖酵解可以反应成丙酮酸,草酰乙酸由磷酸烯醇式丙酮酸羧激酶催化,消耗1个ATP,变成磷酸烯醇式丙酮酸,然后再由丙酮酸激酶催化生成丙酮酸。

2) 反应步骤:

丙酮酸在丙酮酸羧化酶催化下转化为草酰乙酸,这是三羧酸循环的一个重要回补途径,该反应需要生物素作为辅基,消耗一分子ATP。

2α-酮戊二酸2琥珀酰CoA NAD+ 23

苹果酸在苹果酸脱氢酶作用下被NAD+氧化脱氢生成草酰乙酸,再生的草酰乙酸可再次进入三羧酸循环用于柠檬酸的合成。

扩展资料:

丙酮酸在空气中颜色变暗。加热时缓慢聚合,富有反应性,容易与氮化物、醛、卤化物、磷化物等反应,参与生物体的糖代谢、胶质、氨基酸、蛋白质等的生化合成、代谢、醇的发酵等。

当用力时,在肌肉中被还原为乳酸,休息时再次氧化并部分转变为糖原,丙酮酸是人体的一种成分,在人体内主要参与糖、脂肪等的代谢,也是碳水化合物代谢的中间产物之一。