高斯滤波公式_高斯滤波系数
6000字 的测绘
5. 梁的内力方程 切(剪)力图和弯矩图 分布载荷、剪力、弯矩之间的微分关系 正应力强度条件 切(剪)应力强度条件 梁的合理截面 弯曲中心概念 求梁变形的积分法 叠力口法和卡氏第二定理我对测绘学的认识
高斯滤波公式_高斯滤波系数
高斯滤波公式_高斯滤波系数
学院:测绘学院 专业:测绘工程 班级:10级4班 姓名: 学号:
作为武汉大学测绘学院测绘工程专业的一名大一新生,我很有幸上了由几位的两院院士及主讲的《测绘学概论》,在这个课堂上,我不仅见到了在我国乃至非常的院士、、专家,还在他们独道精辟的讲解下认识了测绘学这门学科,了解学习了很多关于测绘学的知识及其发展前景。作为专业的基础,我从课堂、图书、网络等各个方面积极的了解测绘学,拓宽了我的知识面,使我认识到测绘不是他们所说的“冷门专业”“辛苦专业”,获益匪浅,使我加深了对测绘的兴趣。下面我将从几个方面讲述我对测绘学的认识及感想。
测绘学古老而现代,绘学现在正在向一门刚兴起的学科—地球空间科学发展。测绘学是一门古老的学科,有着悠久的历史。测绘学的发展在世界上古史时代,就有利用测绘学智丽尼罗河泛滥后农田边界整理的传说。公元前7世纪,管仲在其所著《管子》一书中已收集了早期的地图27幅。公元前5世界至3世纪,我国已有利用磁石制成最早的指南工具“司南”的记载。公元前130年,西汉初期便有了《地形图》和《图》,为目前所发现我国最早的地图。随着人类的进步和科学技术的不断发展,测绘学科的理论、技术、方法及其学科内涵也随之发生了很大的变化。尤其是在当代,由于空间技术、计算机技术、通信技术和地理信息技术的发展,测绘学的理论基础、工程技术体系、研究领域和科学目标与传统意义上的测绘学有了很大的不同。测绘学日益发展成为国内外正在兴起的一门新型学科——地球空间信息学(Geo-Spatial Information Science,简称Geomatics)
测绘学的主要研究对象是地球(当然再未来将发展到外太空,研究其他的星球)。人类对地球形状认识的逐步深化,要求测定地球的形状和大小,从而促进了测绘学发展。因此,测绘学可以说是地球科学的一个分支。测绘学的研究成果是以地图为代表的信息产品,地图的演变及其制作过程、方法是测绘学进步的一个主要标志。测绘学获取观测数据的工具是测量仪器,测量学的发展很大程度上取决于测绘方法和测绘仪器的创造和改革。测绘仪器的发展经历了早期的游标经纬仪到小平板、大平板仪、水准仪、航空摄影机、摆仪、重力仪、全站仪,测量机器人,数字绘图机。成果也原来的手绘地图到数字地图,由原来的二维地图到现在的三维地图,四维地图,最近由武汉大学测绘遥感信息工程重点实验室研制的“天地图”这一伟大成果就是一个很好的代表。
测绘学的科学地位和作用意义重大。在科学研究中的作用:测绘学在探索地球奥秘和规律、深入认识和研究地球的各种问题中发挥着重要的作用。现在的测量技术可以提供几乎任意时区域分辨率系列,具有检测瞬时地理如地壳运动,重力场的时空变化,地球的潮汐和自转等问题,这些观测成果可以用于地球内部物质的研究,尤其在解决地球物理方面可以起到辅助作用。测绘许饿在国民经济上的作用是广泛。丰富的地理信息是国民经济和信息化的重要基础,为构建“数字城市”“数字”提供了重要的资源。在现代化的今天,测绘学在武器的定位、发射、制导等方面发挥着不可代替的作用。另外在防灾减灾方面,测绘做出了不可磨灭的作用,2008年汶川特大中,测量所的的地图在中起指导作用,减少了灾难等带来的重大损失。在以后的发展中,测绘在防灾、减灾上仍然将发挥它的作用,非常重视测绘的作用。
测绘学的分类。随着测绘科技的发展和时间的推移,在发展过程中形成大地测量学、普通测量学、摄影测量学、工程测量学、海洋测绘和地图制图学等分支学科。大地测量学研究和测定地球的形状、大小和地球重力场,以及地面点的几何位置的理论和方法。普通测量学 研究地球表面局部区域内控制测量和地形图测绘的理论和方法。局部区域是指在该区域内进行测绘时,可以不顾及地球曲率,把它当作平面处理,而不影响测图精度。摄影测量学 研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量。工程测量学 研究工程建设中设计、施工和管理各阶段测量工作的理论、技术和方法。为工程建设提供的测量数据和例尺地图,保障工程选址合理,按设计施工和进行有效管理。海洋测绘 研究对海洋水体和海底进行测量与制图的理论和技术。为舰船航行安全、海洋工程建设提供保障。地图制图学 研究地图及其编制的理论和方法。下面我将就这几个分支按我理解简单叙述。
大地测量学
大地测量学是测绘学的一个分支。研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。大地测量工作为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、和各种航天器提供地面站的坐标和地球重力场资料。
大地测量学的基本任务是1、研究全球,建立与时相依的地球参考坐标框架,研究地球形状及其外部重力场的理论与方法,研究描述极移固体潮及地壳运动等地球动力学问题,研究高精度定位理论与方法。2、 确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。研究月球及太阳系行星的形状及其重力场。3、建立和维持具有高科技水平的和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。4、研究为获得高精度测量成果的仪器和方法等。5、研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。6、研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。
几何大地测量学。19世纪起,许多都开展了全国天文大地测量工作,其目的并不仅是为求定地球椭球的大小,更主要的是为测制全国地形图的工作提供大量地面点的几何位置。为达此目的,需要解决一系列理论和技术问题,这就推动了几何大地测量学的发展。首先,为了检校天文大地测量的大量观测数据,消除其间的矛盾,并由此求出最可靠的结果和评定观测精度,法国的勒让德(A.M.Legendre)于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。高斯于1828年在其著作《曲面通论》中,提出了椭球面三角形的解法。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的F.R.赫尔默特提出了在天文大地网中所有天文点的垂线偏平方和为最小的条件下,解算与测区大地水准面拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。
物理大地测量学。法国的勒让德(A.M.Legendre)于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的F.R.赫尔默特提出了在天文大地网中所有天文点的垂线偏平方和为最小的条件下,解算与测区大地水准面拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。
卫星大地测量学。到了20世纪中叶,几何大地测量学和物理大地测量学都已发展到了相当完善的程度。但是,由于天文大地测量工作只能在陆地上实施,无法跨越海洋;重力测量在海洋、高山和荒漠地区也少量资料,因此地球形状和地球重力场的测定都未得到满意的结果。直到1957年颗人造地球卫星发射成功之后,产生了卫星大地测量学,才使大地测量学发展到一个崭新的阶段。
摄影测量学
摄影测量学研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量摄影测量学。根据地面获取影像时,摄影机安放的位置不同,摄影测量学可以分为航空摄影测量学、航天摄影测量与地面摄影测量。航空摄影测量:将摄影机安放在飞机上,对地面进行摄影,这是摄影最常用的方法。航空摄影测量所用的是一种专门的大幅面的摄影机又称航空摄影机。航天摄影测量学:随着航天、卫星、遥感技术的发展而发展的摄影测量技术,将摄影机安装在卫星上。近几年来,高分辨率卫星摄影的成功应用,已经成为基本地图测图、城市、土地规划的重要资源。近地摄影测量是将摄影机安装在地面上进行的摄影测量。
摄影测量学的一些基本原理包括影象与物体的基本关系、影象与地图的关系、摄影机的内方位元素、外方位元素、共线方程、立体观测方法等。在影像上进行量测和解译,主要工作在室内进行,无需接触物体本身,因而很少受气候、地理等条件的限制;所摄影像是客干湿球温度计测量原理 干湿球电学测量和信号传送传感 光电式仪 湿度计 氯化锂电阻湿度计 氯化锂湿度计 陶瓷电阻电容湿度计 毛发丝膜湿度计 测湿布置技术观物体或目标的真实反映,信息丰富、形象直观,人们可以从中获得所研究物体的大量几何信息和物理信息;可以拍摄动态物体的瞬间影像,完成常规方法难以实现的测量工作;适用于大范围地形测绘,成图快、效率高;产品形式多样,可以生产纸质地形图、数字线划图、数字高程模型、数字正摄影像等。
摄影测量学的研究方向。1、数字摄影测量:以航空影像和卫星米级高分辨率影像为数据源,扩展计算机立体相关理论与算法,发展立体几何模型确定和精化的新方法,以及研究困难地区数字立体测图的新技术;研究近景(地面)摄影测量中的数字相机的快速检校新算法,数字影像匹配问题,以及在工业生产过程自动监测和土木工程建筑物(如桥梁和隧道)形变监测中的问题。2.遥感技术及应用以多光谱、多分辨率和多时相卫星影像为数据源,研究地表变迁及地质调查的遥感新方法;研究地球资源(如土地利用)变化检测的有效方法,发展半自动或全自动化的遥感监测手段;开发监测城市环境污染和自然灾害(如洪水与森林、农作物病虫害)的实用遥感系统,等等。基于合成孔径雷达图像,开展干涉雷达(InSAR)等技术的地表三维重建、大范围精密地表形变(包括滑坡、城市沉降和地壳形变)探测和气象变化监测的研究。3.3S技术及应用研究车载CCD序列影像测图的方法和算法,为线性工程勘测和调查提供快速而有效的地面遥感测量手段;研究包括遥感(RS)、全球定位系统(GPS)和地理信息系统(GIS)在内的3S技术集成的模式和方法,为我国西部大开发的、公路建设探索全新的勘测设计手段。
地图制图学
地图制图学是研究地图及其编制和应用的一门学科。它研究用地图图形反映自然界和人类各种现象的空间分布,相互联系及其动态变化,具有区域性学科和技术性学科的两重性,亦称地图学。
地图制图学的理论与技术。地图编制研究制作地图的理论和技术。主要包括:制图资料的选择、分析和评价,制图区域的地理研究,图幅范围和比例尺的确定,地图投影的选择和计算,地图内容各要素的表示法,地图制图综合的原则和实施方法,制作地图的工艺和程序,以及拟定地图编辑大纲等。地图整饰研究地图的表现形式。包括地图符号和色彩设计,地貌立体表示,出版原图绘制以及地图集装帧设计等。地图制印研究地图的理论和技术。包括地图复照、翻版、分涂、制版、打样、印刷、装帧等工艺技术。此外,地图应用也已成为地图制图学的一个组成部分。它主要研究地图分析、地图评价、地图阅读、地图量算和图上作。
地图制图学的发展趋势随着现代科学技术的发展,地图制图学也进入了新的发展阶段,其主要特点和趋势为:①地图制图学作为区域性学科,其重点已由普通地图制图转移到专题地图制图,并向综合制图、实用制图和系统制图的方向发展。②地图制图学作为技术性学科,正在向机助制图方向发展,有可能逐步代替延续几千年的手工编图的作业方法。③随着地图制图学同各学科间的相互渗透,产生了一些新的概念和理论。例如,以地图图形显示、传递、转换、存储、处理和利用空间信息为内容的地图信息论和地图传输论;研究经过地图图形模式化建立地图数学模型和数字模型的地图模式论;研究用图者对地图图形和色彩的感受过程和效果的地图感受论;研究和建立地图语言的地图符号学,等等。
工程测量学
工程测量学是研究工程建设和自然资源开发中各个阶段进行的控制和地形测绘、施工放样、变形监测的理论和技术的学科。测绘科学和技术(或称测绘学)是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。
工程测量学的理论平理论。最小二乘法广泛应用于测量平。最小二乘配置包括了平、滤波和推估。附有限制条件的条件平模型被称为概括平模型,它是各种经典的和现代平模型的统一模型。测量误理论主要表现在对模型误的研究上,主要包括:平中函数模型误、随机模型误的鉴别或诊断;模型误对参数估计的影响,对参数和残统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了平和拟稳平的出现和发展。观测值粗的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗的可区分性理论的研究和发展。针对观测值存在粗的客观实际,出现了稳健估计(或称抗估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。
海洋测绘
海洋测绘是以海洋水体和海底为对象所进行的测量和海图编制工作。主要包括海道测量、海洋大地测量、海底地形测量、海洋专题测量,以及航海图、海底地形图、各种海洋专题图和海洋图集等的编制。
海洋测绘的基本理论与方法。测量方法主要包括海洋测量、海洋重力测量、海洋磁力测量、海底热流测量、海洋电法测量和海洋放射性测量。因海洋水体存在,须用海洋调查船和专门的测量仪器进行快速的连续观测,一船多用,综合考察。基本测量方式包括:①路线测量。即剖面测量。了解海区的地质构造和地球物理场基本特征。②面积测量。按任务定的成图比例尺,布置一定距离的测线网。比例尺越大,测网密度愈密。在海洋调查中,广泛采用电定位系统和卫星导航定位系统。海洋测量的基本理论、技术方法和测量仪器设备等,同陆地测量相比,有它自己的许多特点。主要是测量内容综合性强,需多种仪器配合施测,同时完成多种观测项目;测区条件比较复杂,海面受潮汐、气象等影响起伏不定;大多为动态作业,测者不能用肉眼通视水域底部,测量难度较大。一般均采用电导航系统、电磁波测距仪器、水声定位系统、卫星组合导航系统、惯性导航组合系统,以及天文方法等进行控制点的测定和测点的定位;采用水声仪器、激光仪器,以及水下摄影测量方法等进行水深测量和海底地形测量;采用卫星技术、航空测量以及海洋重力测量和磁力测量等进行海洋地球物理测量。
现代测绘中的新技术
随着电子信息技术、通信技术、网络技术等的飞速发展,测绘学也迎来发展的机遇与挑战。测量理论,测量方法,测量仪器的改进推动了测绘学科的发展,现在的测绘不但测量精度大大提高,测量时间大大的减少,劳动强度降低,测绘工作者也不再是眼中“农民工”。这些新技术包括:1、卫星导航定位技术。以美国的GPS,的GLONASS,的北斗以及在建的欧盟的GALILES为代表的的定位系统为测绘工作带来极大的方便,而且提高了精度。2、RS(遥感),他是一种不通过接触物体本身,用传感器采集目标的电磁波信息,经过处理、分析后识别目标物的现代科学技术。我们武汉大学在遥感方面实力强大,遥居。3、数字地图制图技术。4、GIS(地理信息系统)GIS地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。简单的说,地理信息系统就是综合处理和分析地理空间数据的一种技术系统。5、3S集成技术。即GPS、GIS与RS技术的集成,是当前国内外发展的趋势。在3S技术的集成中,GPS主要用于实时快速的提供物体的空间位置;RS用于实时快速的提供大面积的地表物质及其环境的几何与物理信息,以及他们的各种变化;GIS则是对多种来源时空数据的综合处理分析和应用的平台。6、虚拟现实摸型技术,他是由计算机构成的高级人机交换系统。
测绘学博大精深,我们对它的了解还很肤浅,但我相信在我们回在今后的学习工作中对它有更深的了解,并且,在不久的将来我们必将献身测绘事业,献身祖国的建设事业,成为一个21世纪合格的测绘工作者和祖国的建设的接班人!
通信仿真中的卷积为什么用乘实现
八、电工电子技术在MATLAB中,可以用函数y=filter(p,d,x)实现分方程的仿真,也可以用函数 y=conv(x,h)计算卷积。
(1)即y=filter(p,d,x)用来实现分方程,d表示分方程输出y的系数,p表示输入x的系数,而x表示输入序列。输出结果长度数等于x的长度。
实现分方程,先从简单的说起:
filter([1,2],1,[1,2,3,4,5]),实现y[k]=x[k]+2x[k-1]
y[1]=x[1]+20=1 (x[1]之前状态都用0)
y[2]=x[2]+2x[1]=2+21=4
(2)y=conv(x,h)是用来实现卷级的,对x序列和h序列进行卷积,输出的结果个数等于x的长度与h的长度之和减去1。
卷积公式:z(n)=x(n)y(n)= ∫x(m)y(n-m)dm.
(1)h = [3 2 1 -2 1 0 -4 0 3]; % impulse response
x = [1 -2 3 -4 3 2 1]; % input sequence
y = conv(h,x);
n = 0:14;
subplot(2,1,矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分1);
stem(n,y);
xlabel('Time index n'); ylabel('Amplitude');
title('Output Obtained by Convolution'); grid;
(2)x1 = [x zeros(1,8)];
subplot(2,1,2);
stem(n,y1);
xlabel('Time index n'); ylabel('Amplitude');
title('Output Generated by Filtering'); grid;
程序二:filter和conv的不同
x=[1,2,3,4,5];
h=[1,1,1];
y1=conv(h,x)
y2=filter(h,1,x)
y3=filter(x,1,h)
结果:y1 = 1 3 6 9 12 9 5
y2 = 1 3 6 9 12
y3 = 1 3 6
可见:filter函数y(n)是从n=1开始,认为所有n<1都为0;而conv是从卷积公式计算,包括n<1部分。
因此filter 和conv 的结果长短不同
程序三:滤波后信号幅度的变化
num=100; %总共1000个数
x=rand(1,num); %生成0~1随机数序列
x(x>0.5)=1;
x(x<=0.5)=-1;
h1=[0.2,0.5,1,0.5,0.2];
h2=[0,0,1,0,0];
y1=filter(h1,1,x);
y2=filter(h2,1,x);
n=0:99;
subplot(2,1,1);
stem(n,y1);
subplot(2,1,2);
stem(n,y2);
MATLAB中提供了卷积运算的函数命令conv2,其语法格式为:
C = conv2(A,B)
C = conv2(A,B)返回矩阵A和B的二维卷积C。若A为ma×na的矩阵,B为mb×nb的矩阵,则C的大小为(ma+mb-1)×(na+nb-1)。
例:
A=magic(5)
A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
>> B=[1 2 1 ;0 2 0;3 1 3]
B =
1 2 1
0 2 0
3 1 3
>> C=conv2(A,B)
C =
17 58 66 34 32 38 15
23 85 88 35 67 76 16
55 149 117 163 159 135 67
79 78 160 161 187 129 51
23 82 153 199 205 108 75
30 68 135 168 84 9
33 65 126 85 104 15 27
MATLAB图像处理工具箱提供了基于卷积的图象滤波函数filter2,filter2的语法格式为:
Y = filter2(h,X)
其中Y = filter2(h,X)返回图像X经算子h滤波后的结果,默认返回图像Y与输入图像X大小相同。例如:
其实filter2和conv2是等价的。MATLAB在计算filter2时先将卷积核旋转180度,再调用conv2函数进行计算。
Fspecial函数用于创建预定义的滤波算子,其语法格式为:
h = fspecial(type)
h = fspecial(type,parameters)
参数type制定算子类型,parameters指定相应的参数,具体格式为:
type='erage',为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。
用阻尼造句(大约30个左右)
2 电路的分析方法1创建了弹支挤压油股阻尼器的双稳态区域图和减振失效边界围。
2在阻尼不是很大的情况下,速度脉冲效应是较大的。
3增益调度表的设计准则是阻尼比,保证在所有特征点的性能要求。
4提出了用等效粘性阻尼理论和试验相结合,建立金属橡胶材料动态力学模型的一种新方法。
5本文给出库仑阻尼振动的一般解
并得出表示库仑阻尼器衰减效果的基本关系式.
6研究了液浮陀螺的阻尼比随温度变化剧烈的问题,提出采用陷波滤波器补偿陀螺阻尼比的方法。
7通过脉冲形成回路的阻尼振荡情况的近似理论分析与实验结果进行比较,了解了MS的工作过程。
8双桥:在两个平行碳素横梁中间插有透明阻尼器
以减少球线和球拍的有害震动.
9基于理想弹塑性本构关系,推导了铅剪切阻尼器的两个阻尼力模型。
10
11
以二阶欠阻尼控制系统的设计为例,优化出系统的阻尼比。
12
按照阻尼比和模型的延迟时间选择不同的闭环极点,并且为计算提供了简单的公式。
13
研究了具有高斯白噪声的过阻尼二阶线性系统的随机共振现象,基于线性系统理论,得到了系统输出幅度增益的表达式。
14
研究在单点激振情况下阻尼套筒对蓖齿封严结构的减振规律.
15
通过采用高低压回路和过阻尼驱动技术,解决了某一旋臂水池三自由度构横倾轴、纵倾轴零位准确定位及偏航轴位置调整等问题。
16
本文在时域有限元离散的基础上,导出了集中质量阻尼弹性结构动力模型的显式分法,数值稳定条件同中心分法。
17
另外,对叠层橡胶支座的阻尼比随剪应变、压应力及荷载频率的变化情况进行了分析。
18
19
由于虚数部分抵消了
故y1 = filter(h,1,x1);其总和就是总阻尼.
20
一些和研究主题相关的参数,例如:M的频率范围、频率间格、阻尼比、质量比与总个数等,亦在本文中加以探讨。
21
分析结果证明:使用空气静压导向装置可以对带锯条实现静压推力、振动阻尼和稳定导向,能够提高带锯条的稳定性。
22
对于不同的传压管径、传压管长度和腔室容积,得到不同阻尼的衰减振荡曲线以及过阻尼时呈单调衰减的回零过程曲线。
23
汽车传感器的监测值,如身体,车轮和横向加速度,并为每个车轮在持续的基础上用它们来产生理想的阻尼力。
24
为使结构耐震设计更趋经济,建筑结构必须有效地吸收并消释大震输入能,采用三角形钢板之加劲阻尼装置可增加结构劲度和迟滞阻尼。
25
理论推导了两机互联系统的共振机理,分析了两机互联系统固有频率与阻尼的关系。
26
由实测机床空载功率同计算相结合,确定传动件的当量粘滞阻尼系数。
为抑制柔性机械臂的低频固有振动,该文提出利用组合结构滞迟阻尼效应来提高柔性机械臂的抑振性能。
28
这样在研究中,可以采用开环控制方式或力反馈控制方式实现阻尼力的控制。
29
本机组有液压,双锥放料,液压铲头引头,送料,校直,剪切,阻尼,收卷,上料,下料小车等主要部件组成。
30
利用JGYW2型双单摆振动示波装置对两个相互垂直方向的同频率欠阻尼振动的合成进行了实验研究和理论分析,得到了欠阻尼振动合成的部分图形和表达式。
高斯散度定理
临界频率是阻尼的函数,选择合适的阻尼可使临界频率尽量小,但存在下限。高斯公式,又称为散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。
散度定理可以用来计算穿过闭曲面的通量,例如,任何左边的曲面;散度定理不可以用来计穿过具有边界的曲面,例如,任何右边的曲面。在这图内,曲面以蓝色显示,边界以红色显示。
散度定理可以用来计算穿过闭曲面的通量,例如,任何左边的曲面;散度定理不可以用来计穿过具有边界的曲面,例如,任何右边的曲面。在这图内,曲面以蓝色显示,边界以红色显示。
更加地说,高斯公式说明向量场穿过曲面的通量,等于曲面内部区域的散度的三重积分。直观地,所有源点的和减去所有汇点的和,就是流出一个区域的流量。
高斯公式在工程数学中是一个很重要的结果,特别是静电6.9 了解三相变压器联接组和铁芯结构对谐波电流、谐波磁通的影响学和流体力学。
高斯公式用散度表示为:
其中Σ是空间闭区域Ω的边界曲面,而n是向量A在曲面Σ的外侧法向量上的投影。
负氧离子发生器技术
标签(空格分隔): 环保 pm2.5 氧负离子
经历100多年后,J .Thomson个以公式方法来表达离子的特性,同时建立了正、负离子的模型,接着Eiseer和Geieel两人证明了离子的存在,即带有正、负电荷的粒子,其粒径略大于分子的直径。1905年Langerin在大气中发现了第二种离子称为Langerin离子或大直径带电粒子,又称为重离子。到1909年A.Pouer发现了第三种离子即中等直径的离子,称之为中离子。到20世纪30年代德国Dessauer开创了大气正、负离子生物的研究。他首先使用了电晕离子发生器,从此形成了关于负离子生物效应的次研究,有数以百计的论文,研究和实验报告,证明了负离子对人体有明显的有益作用,而正离子则相反,特别对人的血压和新陈代谢有明显的破坏作用。这些研究由于发生第二次世界大战而终止。美国加州大学的ALbeterPani Kragan和他的研究小组开创了离子生物效应的微观研究与实验,把对空气负离子的研究推向了第二次开发与使用的。Kragan做了大量的动植物和人体试验,从人体的内分泌和机体内部循环及各种酶的生成反应等方面去论证负离子是如何影响人体和动植物的,是如何产生各种生物效应的。世界各国许多研究者也在他们各自研究的基础上,进行了以上的试验,认为负氧离子有明显的生物效应。国外已开发出不少新型负离子发生器以供实验研究与在空调房间和医疗卫生领域中使用。
从18德国科学家Elster和Ger发现了空气负离子的存在,德国物理学家PhilipLeonard博士个在学术上证明负离子对人体的功效,到1902年Asamas等肯定了空气离子存在的生物意义.1903年学者发表了用空气负离子治疗疾病的论文,相继1932年美国RCA公司Hamsen发明了世界上台医用空气负离子发生器,半个世纪以来,空气负离子研究在欧、美、日各国已经历了很长的发展、应用阶段。
在1976年荣获日内瓦新发明新技术展览会金奖的AS系列负氧离子发生
器是利用电晕放电来产生负离子的。一种负氧离子发生器的结构如图 2-1 所示
在图 2-1 中,排针状负极和环形正极之间加上直流高压 3~4 千伏,在排针状负极便产生电晕放电,使空气电离。由于氧的电子亲和能力远大于氮等其他气体的电子亲和能,故空气电离的大量自由电子大部分为氧分子所俘获而形成负氧离子 。这些负氧离子受负高压的排斥而离去,有的还在负极后面装上小的轴向风机,负氧离子在电场和风机风力的作用下,在环形正电极的缝隙中源源不断地排出,形成含有大量负氧离子的清新空气。
空气主要是由氮(占空气的 78.09%)氧(占空气的 20.95%)等气体组成。在正常情况下 呈中性,但由于宇宙射线,紫外线,微量放射性物质的辐射,以及一些物理和化学反应等,会使空气中极少数中性分子(或原子)电离成自由电子和正离子,自由电子往往又同中性分子结合成负离子。由于各种气体原子(或分子)的电子亲和能的强弱各不相同,亲和能大的容易吸附电子生成负离子,氮的电子亲和能为 0~0.05 电子伏特,氧的电子亲和能为 1.13~1.47 电子伏特,且在低层
大气中含量最丰富,因此,空气电离的自由电子大部分为氧分子俘获而成为负氧离子,过程如下: [2]
但在电离过程中也有的氧分子被还原为氧原子
如果氧原子再与氧分子结合,则生成臭氧
以上说的是电离式负氧离子发生器电极附近的情况 。
[3]
负离子发生器工作原理来源于电晕放电。电晕放电是气体自持放电的一种形式,它不需要外加电离源来引发和维持放电。为了保持稳定的电晕放电,必须形成一个非均匀电场。随着施加在电极间的电压的增加,导线附近的空间电场强度也将增大。通常在自由空间中,由于宇宙辐射,每立方厘米空气中大约有1000个自由电子存在,这些自由电子在电场的作用下,会受到加速,撞击气体原子或分子。自由电子的加速度会随着电场强度的增加而增大,自由电子在撞击气体原子或分子前积累的能量也随之增大。当电场强度达到气体放电的临界值时,自由电子在撞击前积累的能量将足以从气体原子或分子撞击出一个电子。此时在导线附近一个小范围内的空气就开始电离,出现了气体的非自持放电。继续升高电压,气体的电离将加剧,形成大量电子崩,产生大量的电子和正负离子,并伴随着发出淡蓝色的辉光和咝咝声,放电也就由非自持放电转变为自持放电。这种特定形式的气体放电就称为电晕放电。
电场的不均匀性把主要的电离过程局限于局部电场强度很高的电极附近,特别是发生在曲率半径很小的电极附近或大或小的薄层中,气体的发光也只发生在这个区域里,这个区域称为电离区域,或称之为电晕层或起晕层。在区域之外,由于电场弱,不发生或很少发生电离,电流的传导依靠正离子、负离子或电子的迁移运动,因此电离区域之外的区域被称为迁移区域或外围区域。若两电极中一个电极起晕,则放电的迁移区域中基本上只有一种符号的带电粒子,在此情况下,电流是单极性的。本实验中的负离子发生器形成不均匀电场的两个电极分别是加负高压的电晕线极和接地电极,发生的是负电晕放电,其形成的就是负极性的电晕电流。
电晕放电产生后,若再进一步增大两电极间的电压,电晕区将逐渐扩大,亮度及咝咝声也越来越大。当电压升高到某一值时,在某些放电点上可以出现向外辐射的刷状细火花,它的范围要比正常的电晕区大得多,咝咝声中还伴随着拆裂声。这种放电形式称为刷状放电。电压继续升高,刷状火花越来越长,将在正负两极间构成通道,产生气体的击穿,两极间的电压将随之急剧下降。根据电源容量的大小,击穿可以表现为弧光放电的形式,也可以表现为火花放电的形式。
当电源容量足够大时,气体击穿后会有很大的放电电流流过,在电极间形成电弧,称为弧光放电;如果电源容量较小,则气体击穿以后,放电电流会受到限制,使之不足以形成电弧,这时的放电就会停留在火花放电阶段。火花放电是一束明亮曲折、常常又是分叉的细丝,这些细丝很快地穿过放电间隙,又很快地熄灭,熄灭后随即再度产生。火花放电的电流比弧光放电要小得多。
为了使发生器能正常工作,必须在电极间加以一定的电压,使之形成电晕放电。形成电晕放电的电压称为起晕电压。此时由于空气被电离而出现大量离子,在电压的作用下就会有一定的电晕电流流过,电晕电流将随着电压的升高而增大。当然由于空气中自由电子的存在,即使在所加电压远小于起晕电压时,电极间也会因自由电子的流动而形成电流,但这些自由电子的数目不大,所形成的电流和电晕电流相比是微不足道的。 [4]
负氧离子发生器的一个重要技术指标是负氧离子浓度。一般在发生器说明书
中标出的浓度数值,是表示在负氧离子发生器正前方 20厘米处空气中的负氧离
行理论计算与测试。 从负氧离子发生器中排出的负氧离子流中,含有传导电流
和运流电流,即
(2)带入(1)得
利用高斯定理
现在讨论氧离子以恒定速度运动的一维稳态系统,由于
(4)变为
(5)有指数程序一:以下两个程序的结果一样衰减解
因为
故负氧离子浓度为
结果表明:稳态系统的负氧离子浓度 n 从针状负极开始,随距离指数地减小,
如图 2-2 所示,实验观测值与理论计算值相符。
文章通过模拟自然条件下的温度和湿度,对空气负离子浓度进行了几个月的连续测试,详细讨论了温湿度变化对3.8 掌握不对称三相电路的概念负离子浓度的影响。同一地点来自环境的射线强度基本保持不变,即实验环境中只有温度和湿度变化.
负离子发生器一般由本体、电晕线发射端、接地端、电源输入端构成。
如图1所示,交流电压经过降压、整流、滤波,成为直流电,再经振荡器、放大电路、开关管,经高压磁包去控制放电极针产生负离子。高压磁包即高频变压器,高压包内有高压硅堆对其逆变电压进行整流,因此其输出的是经过整流的直流电。凡是逆变的电流都属交流的一种,变压器的储能和释放能量时的电流方向是相反的。电流方向固定不变化的电流才叫直流电。逆变有单端、桥式几种,有单端正激式、单端反激式、半桥式、全桥式等多种。
本体:是由塑料材料作为外壳,采用阻燃环氧树脂封装而成的高压绝缘体。本体外壳通常采用PBT(聚对苯二甲酸丁二醇酷)或PEI(聚)注塑成型,材料必须耐高温超过200℃,阻燃绝缘。
电晕线发射端:通常采用金属针或碳纤维。
接地端:采用铜片与地相连。
电源输入端:电源供电导线。
上图是一种高效开放式负离子发生器,它采用可控硅逆变高压,悬浮式放电针,结构简单,效果良好,安全可靠。市电电压在160V~V均能正常工作,且耗电极省,仅1W左右,因此可长期连续工作。
220V市电经VD1、VD2和R1、R2的整流、限流,单向脉动电流控制VS的通断,产生振荡,经变压器T升压后,经VD3整流得到万伏左右的负高压,经放电针对空气放电,产生电离,生成负离子。
高压磁包由于产生高压、高温,极易产生电火花,容易击穿周围电子元件,因此这里采用Tenon(铁氟龙)封装高压磁包。高压磁包外部被含有阻燃耐热性树脂的环氧树脂或者含有皿鳌(乙酷)树脂的塑胶粉灌浇处理。PCB焊接(Soldering)面被塑胶粉覆盖的同时也能填充绝缘空隙部分;空隙部分被阻燃环氧树脂封填,避免了电路元件间的相互干扰,能够提高电路元件的使用寿命。
已经有了属于自己的高端负离子专利技术:负离子转换器技术、纳子富勒烯释放器技术,使得负氧离子在医疗上已成为一种辅助医疗手段。
负离子转换器是应用在负离子生成设备上的转一种特殊部件,可以使设备产生小粒径空气负离子即轻离子,小粒径负离子具有动能高、活性高的特点,有很大的迁移距离和速度,在没有风机外吹的情况下负氧离子也可以覆盖到4-5米。
富勒烯是采用纳米技术制造的电触媒材料,是一种接近超导的材料,也即电阻几乎等于零,在电离子通过该材料时,会产生强大的共振效益,因此极利用电离子的游离析出,所以不像传统的离子释放材料(普通碳纤维金属等)需要很强的电流。只需比较微弱的电流即可释放大剂量、高纯度、高活性、小粒径的负离子。
以淘宝某品牌负氧离子发生器为例
可以看出其有着-40kv的输出电压和<20w的输出功率。
啥是高斯公式
8.4 RC和RL电路暂态过程高斯公式又叫高斯定理:
6.2 掌握变压器额定值的含义及作用公式为: ∮F.dS=∫△.F 注:△--应为倒三角(由于输入的关系,打成正立三角形了)即是哈密顿算符 F、S为矢量
还有就是最简单的高斯求和公式 首项加末项乘以项数再除以二
高斯求和公式:(首项+末项)项数/2
高斯定理数学公式是什么?
高斯定理数学公式是:∮F·dS=∫(▽·F)dV。
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。
高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
静电场与磁场
两者有着本质上的区别。在静电场中,由于自然界中存在着的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。
27而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于介绍了流体动力系统常用的提高阻尼比的方法,lishixinzhi/1858647提出了可调液压阻尼器的变阻尼气压比例伺服系统。零。
显示平滑滤波的图像用什么函数
14 电气设备选择显示平滑滤波的图像用高斯滤波器函数。
高斯函数具有五个重要的性质,这些性质使得它在早期图像处理别有用,这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用。
平滑滤波的原理:
当滑动窗口内的真实数据变化不大的时候,我们可以抑制掉很大一部分噪声,滤波结果近似真实值;当滑动窗口内的真实值变子浓度,大于或小于20厘米处的浓度不一样,因此,对负氧离子的浓度必须进化较大时,这种滤波方式就会损失一部分度,滤波结果接近真实值的平均期望。
高斯定理是怎么计算的?
高斯定理求电场强度可由以下公式计算:
Φ(E) = ∫E·dS = 合计60题,每题2分。考试时间为4小时。Q/ε0
其中,Φ(E)表示通过任意一个闭合曲面的电场通量;E表示电场强度的大小和方向;dS是曲面元素的面积微元;Q是该曲面所包含的电荷量,ε0为真空介电常数。
对于6. 有机化学一个球对称的电荷分布,可以利用高斯定理来求解电场强度。如下所示:
首先选择一个以球心为中心的球形闭合曲面,该曲面包含了所有电荷。由于球对称性,球面上面元素的电通量大小是相等的,即Φ(E) = E·4πR^2;
其次,根据高斯定理Φ(E) = Q/ε0,可求出电场强度为:
E = Q/(4πε0R^2)
其中,Q表示闭合曲面内包含的电荷总量,R表示球形闭合曲面的半径。
高斯定理求电场强度时注意事项
1、选择适当的闭合曲面:高斯定理适用于任何闭合曲面,但在选择闭合曲面时需要应根据具体问题,选择易于计算的闭合曲面,同时要满足曲面对于电场有充分的截断作用,即曲面内包含了全部的电荷。
2、了解电荷分布特点:高斯定理适用于球对称、柱对称、平面对称等特殊的电荷分布情况。如果电荷分布不满足特殊对称性的条件,则需要采用其他的方法来求解电场强度。
3、注意电荷的正负性:高斯定理只适用于静电场情况下的计算,即设电荷分布所形成的电场是不变的。如果有电荷的运动或变化,高斯定理就不适用了。
4、理解电场通量概念:求解电场强度前,需要充分理解电场通量的概念。电场穿过任意一个闭合曲面的通量,表示了电场的强度和方向信息杂化的一种物理量。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。