对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
得力函数计算器怎么算log底数
科学计算机计算对数log的方法:
情况一:计算底为10的log(10)即lg:
一般的计算器都默认log的底数为10,因此计算这类对数时,直接点击计算机的“log”键,再搭上数字即可
例如,求“lg(10)”可在科学计算器中按下:
“log”,“10”,“=”即可。
情况二:计算底为e的log(e)即ln:
点击图示中的“ln”键,再输出数字即可。
例如,求“ln(10)”可在科学计算器中按下:
“ln”,“10”,“=”即可。
情况三:计算以任意数为底数的log,即logx(y)
例如求“log3(9)”,
由对数换地公式可知log3(9)=lg9/lg3,
故此,求“log3(9)”可在科学计算器中输入:
“log”,“9”,“÷”,“log”,“3”,“=“即可。
高中数学 log的计算方式,请详细解答。
在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=loga N。其中,a叫做对数的底数,N叫做真数。
扩展资料:
对数在数学内外有许多应用。这些中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。
Benford关于领先数字分配的定律也可以通过尺度不变性来解释。对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。
用^表示乘方,用log(a)(b)表示以a为底,b的对数
表示乘号,/表示除号
定义式:
若a^n=b(a0且a≠1)
则n=log(a)(b)
基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)
推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)
2.
MN=MN
由基本性质1(换掉M和N)
a^[log(a)(MN)]=a^[log(a)(M)]a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN)=log(a)(M)+log(a)(N)
3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N)=log(a)(M)-log(a)(N)
4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)]={a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)]=a^{[log(a)(M)]n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
其他性质:
性质一:换底公式
log(a)(N)=log(b)(N)/log(b)(a)
推导如下
N=a^[log(a)(N)]
a=b^[log(b)(a)]
综合两式可得
N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)][log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)]=b^{[log(a)(N)][log(b)(a)]}
所以
log(b)(N)=[log(a)(N)][log(b)(a)]{这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N)/log(b)(a)
性质二:(不知道什么名字)
log(a^n)(b^m)=m/n[log(a)(b)]
推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n)/ln(b^n)
由基本性质4可得
log(a^n)(b^m)=[nln(a)]/[mln(b)]=(m/n){[ln(a)]/[ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n[log(a)(b)]
log怎么计算
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
计算方式:
根据2^3=8,可得log2 8=3。
扩展资料:
推导公式
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
求导数
(xlogax)'=logax+1/lna
其中,logax中的a为底数,x为真数;
(logax)'=1/xlna
特殊的即a=e时有
(logex)'=(lnx)'=1/x [4]
一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log
aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数
它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数.
举个例子:
log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。
拓展资料
对数的定义
如果
,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作
。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
1.特别地,我们称以10为底的对数叫做常用对数(common
logarithm),并记为lg。
2.称以无理数e(e=2.71828...)为底的对数称为自然对数(natural
logarithm),并记为ln。
3.零没有对数。
4.在实数范围内,负数无对数。[3] 在复数范围内,负数是有对数的。
事实上,当
,,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln
5。
一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log
aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数
它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数.
举个例子:
log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。
拓展资料:
以下是对数函数运算的公式:
对数——百度百科
比如说 5的平方是25
那么 log底下一个小的5 右面一个大的25就应该等于2
也就是log底下的小数的 X 次方等于 右边那个大数
logaA=Y (a的Y次方等于A)
要学log,先学次幂,因为log函数就是次方函数的逆运算的。举个栗子:y=2^x,这就是一个次方函数,我们知道2^5=32,那么现在我想知道的就是32是2多少次方呢?这里就出现了我们提到的log函数,2就是指数函数中的底数,则y=2^x,的逆函数就是x=log2y,因排版原因,log2这个2是写在右下角。
现在知道以2为底数的log了,那不同底数的log按上面的理解就行了。
为16.
过程:
可以把题目变形为:
log2(5^2)
●log3
(2^-4)
●log5(3^-2),
继续变形为
2log5/log2
●(-4)log2/log3
●(-2)log3/log5,
分子分母相互之间约分后,得到
2●(-4)●(-2)=16
如果
a^b=N
那么
loga(N)=b
其中
a是底数
N是真数
读作
a为底
N的对数。
你说的
log9
不存在
没有底数啊
(但是在国外log9
默认为10为底
我们国内10为底N的对数记作
lgN)
底数a>0
a≠1
真数N>0
用对数的换底公式,都换成同样的底
loga(m)=log2(m)/log2(a)
再利用对数的性质计算
log有下标和上标,设下标是A,上标是B
所求的值设为X
那么B^X=A
简单说,就是乘方的逆过程
log是怎样运算的,公式是什么?
1、a^log(a)(b)=b
2、log(a)(a)=1
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a)[M^(1/n)]=log(a)(M)/n
扩展资料:
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。其中对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
有理和无理指数
如果
是正整数,
表示等于
的个因子的加减:
但是,如果是
不等于1的正实数,这个定义可以扩展到在一个域中的任何实数
(参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数
,有一个对数函数和一个指数函数,它们互为反函数。
对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。
复对数
复对数计算公式
复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。