数学界七大迷题

由世界知名数学家组成的「克莱数学学院」(Clay Mathematics Institute),在巴黎举行的年度会议中宣布举办一项「千禧难题大竞赛」(Millennium Prize Problem)。七个问题,一题100万美金,没有时间限制,欢迎有志之士踊跃加入。

100年来,人类解出了20个数学问题100年来,人类解出了20个数学问题


100年来,人类解出了20个数学问题


100年来,人类解出了20个数学问题


七大谜题一旦解出,将造类在密码工程与航空领域的。1900年,德国数学家希尔伯特(Did Hilbert)同样在巴黎举行的第二届数学家协会中公布了他的23个数学难题,100年来,人类已经解出了20个问题,这些结果间接促成了文明史上医学、科技、与安全问题的重大突破。

身为「克莱数学院」成员,在1995年因修补「费马后定理(Fermat's Last Theorem)」的逻辑漏洞而名噪一时的怀尔斯(Andrew Wiles)说:「这是二十世纪难解的七大数学问题。我们希望透过奖金,能吸引并发掘新一代的数学家。」

根据规定,解答必须公布在知名的数学期刊上,而且保留2年的辩证期。一旦通过考验,数学界都满意这样的解释,「克莱数学院」会在颁发奖金前公开所有的审核过程。主办单位认为,笔奖金快也要到4年后才会发出。

虽然外界认为「克莱数学学院」或许可以永远保有那700万美金,他们对研究过程中可能产生的「重要副作用」却十分感兴趣。圣玛丽学院的科学院戴夫林(Keith Devlin)就认为,七大难题是数学界的艾佛勒斯峰,「只有少数人真的想去征服世界峰,但以此发展的求生装备却为商人赚进数百万利润。七大难题,同理可证。」

这七大数学难题分别是:

「The Riemann Hypothesis」(黎曼设)

「The Poincare Conjecture」(庞加莱推测)

「The Hodge Conjecture」

「The Birch and Swinnerton-Dyer Conjecture」

「Nier-Stokes Equations」(流体力学的N-S方程式)

「The Yang-Mills Theory」(杨密规范场论)

「The P vs NP Problem」

世界上难的数学题 世界七大数学难题难倒了全世界(2)

二、霍奇猜想

霍奇猜想是代数几何的一个重大的悬而未决的问题。它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想。它在霍奇的著述的一个结果中出现,他在1930至1940年间通过包含额外的结构丰富了德拉姆上同调的表述,这种结构出现于代数簇的情况(但不仅限于这种情况)。

三、庞加莱猜想

庞加莱猜想早是由法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的数学方面七大千禧年难题之一。2006年确认由数学家格里戈里·佩雷尔曼完成终证明,他也因此在同年获得菲尔兹奖,但并未现身领奖。

基本描述

在1900年,庞加莱曾声称,用他基于恩里科·贝蒂的工作而发展出的同调论,可以判定一个三维流形是否三维球面。不过,他在1904年发表的一篇论文中,举出了一个反例,现在称为庞加莱同调球面,与三维球面有相同的同调群。他引进了一个新的拓扑不变量,称为基本群,并且证明他的反例与三维球面的基本群不同。三维球面有平凡基本群,也就是说是单连通的。他提出以下猜想: 任一单连通的、封闭的三维流形与三维球面同胚。 上述简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。粗浅的比喻即为:如果我们伸缩围绕一个柳橙表面的橡皮筋,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮筋以适当的方向被伸缩在一个甜甜圈表面上,那么不扯断橡皮筋或者甜甜圈,是没有办法把它不离开表面而又收缩到一点的。我们说,柳橙表面是“单连通的”,而甜甜圈表面则不是。 该猜想是一个属于代数拓扑学领域的具有基本意义的命题,对“庞加莱猜想”的证明及其带来的后果将会加深数学家对流形性质的认识,甚至会对人们用数学语言描述宇宙空间产生影响,对于一维与二维的情形,此猜想是对的,现在已经知道,它对于任何维数都是对的。

证明历史

20世纪 这个问题曾经被搁置了很长时间,直到1930年怀特海首先宣布已经证明然而又收回,才再次引起了人们的兴趣。怀特海提出了一些有趣的三流形实例,其原型现在称为怀特海流形。1950和1960年代,又有许多的数学家包括R·H·宾、沃夫冈·哈肯、爱德华·摩斯声称得到了证明,但终都发现证明存在致命缺陷。1961年,美国数学家史提芬·斯梅尔采用十分巧妙的方法绕过三、四维的困难情况,证明了五维以上的庞加莱猜想。这段时间对于低维拓扑的发展非常重要。这个猜想逐渐以证明极难而知名,但是证明此猜想的工作增进了对三流形的理解。1981年美国数学家麦克·傅利曼证明了四维猜想,至此广义庞加莱猜想得到了证明。 1982年,理查德·哈密顿引入了“里奇流”的概念,并以此证明了几种特殊情况下的庞加莱猜想。在此后的几年中,他进一步地发展了此方法,后来被佩雷尔曼的证明所使用。

21世纪数学家格里戈里·佩雷尔曼在2002年11月和2003年7月之间,的数学家格里戈里·佩雷尔曼发表了三篇论文预印本,并声称证明了几何化猜想。在佩雷尔曼之后,先后有3组研究者发表论文补全佩雷尔曼给出的证明中缺少的细节。这包括密歇根大学的布鲁斯·克莱纳和约翰·洛特;哥伦比亚大学的约翰·摩根和麻省理工学院的田刚;以及理海大学的曹怀东和中山大学的朱熹平。 2006年8月,第25届数学家大会授予佩雷尔曼菲尔兹奖,但佩雷尔曼拒绝接受该奖。数学界终确认佩雷尔曼的证明解决了庞加莱猜想。 上一页 1 /4 下一页

世界上难的数学题世界七大数学难题难倒了全世界

今天我们来和大家说说世界七大数学难题,这些可都是世界上难的数学题哦。 说到数学难题你会想到什么,我想到的是哥德巴赫猜想,但其实哥德巴赫猜想并不是这七大数学难题之一,下面就让我们来一起看看当今科技如此发达的情况下还有哪些数学难题。

世界七大数学难题:

1、P/NP问题(P versus NP)

2、霍奇猜想(The Hodge Conjecture)

3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。

4、黎曼猜想(The Riemann Hypothesis)

5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)

6、纳维-斯托克斯存在性与光滑性(Nier-Stokes existence and oothness)

7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)

所谓的世界七大数学难题其实是于2000年5月24日由由美国克雷数学研究所公布的七个数学难题。也被称为千禧年难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金100万美元。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年难题的,极有可能为密码学以及航天、通讯等领域带来突破性进展。

一:P/NP问题

P/NP问题是世界上难的数学题之一。在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年难题之一。P/NP问题中包含了复杂度类P与NP的关系。1971年史提芬·古克和Leonid Levin相对的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。 复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的。很可能,计算理论的未解决问题就是关于这两类的关系的: P和NP相等吗? 在2002年对于100研究者的调查,61人相信是否定的,9个相信是肯定的,22个不确定,而8个相信该问题可能和现在所接受的公理,所以不可能证明或证否。对于正确的解答,有一个1百万美元的奖励。 NP-完全问题(或者叫)的在这个讨论中有重大作用,它们可以大致的被描述为那些在NP中不像在P中的(确切定义细节请参看NP-完全理论)。计算机科学家现在相信P, NP,和类之间的关系如图中所示,其中P和类不交。

设P ≠ NP的复杂度类的图解。如P = NP则三个类相同。 简单来说,P = NP问题问道:如果是/不是问题的正面可以很快验证,其是否也可以很快计算?这里有一个给你找点这个问题的感觉的例子。给定一个大数Y,我们可以问Y是否是复合数。例如,我们可能问53308290611是否有非平凡的因数。是肯定的,虽然手工找出一个因数很麻烦。从另一个方面讲,如果有人声称是"对,因为224737可以整除53308290611",则我们可以很快用一个除法来验证。验证一个数是除数比找出一个明显除数来简单得多。用于验证一个正面所需的信息也称为证明。所以我们的结论是,给定正确的证明,问题的正面可以很快地(也就是,在多项式时间内)验证,而这就是这个问题属于NP的原因。虽然这个特定的问题,近被证明为也在P类中(参看下面的关于"质数在P中"的参考),这一点也不明显,而且有很多类似的问题相信不属于类P。 像上面这样,把问题限制到“是/不是”问题并没有改变原问题(即没有降低难度);即使我们允许更复杂的,后的问题(是否FP = FNP)是等价的。

关于证明的难度的结果

虽然百万美元的奖金和投入巨大却没有实质性结果的大量研究足以显示该问题是困难的,但是还有一些形式化的结果证明为什么该问题可能很难解决。 常被引用的结果之一是设计神谕。想你有一个魔法机器可以解决单个问题,例如判定一个给定的数是否为质数,可以瞬间解决这个问题。我们的新问题是,若我们被允许任意利用这个机器,是否存在我们可以在多项式时间内验证但无法在多项式时间内解决的问题?结果是,依赖于机器能解决的问题,P = NP和P ≠ NP二者都可以证明。这个结论带来的后果是,任何可以通过修改神谕来证明该机器的存在性的结果不能解决问题。不幸的是,几乎所有经典的方法和大部分已知的方法可以这样修改(我们称它们在相对化)。 如果这还不算太糟的话,1993年Razborov和Rudich证明的一个结果表明,给定一个特定的可信的设,在某种意义下“自然”的证明不能解决P = NP问题。这表明一些现在似乎有希望的方法不太可能成功。随着更多这类定理得到证明,该定理的可能证明方法有越来越多的陷阱要规避。 这实际上也是为什么NP完全问题有用的原因:若对于NP完全问题存在有一个多项式时间算法,或者没有一个这样的算法,这将能用一种相信不被上述结果排除在外的方法来解决P = NP问题

世界数学七大难题是什么?

这七个世界难题是,NP完全问题、霍奇猜想、庞加莱猜想、黎曼设、杨米尔斯存在性和质量缺口、纳卫尔斯托可方程、BSD猜想。

2121年前,克雷数学研究所发表了数学领域内7个难题千禧年难题。

难题介绍

黎曼猜想,黎曼猜想是关于黎曼函数的零点分布的猜想,由数学家波恩哈德黎曼于1859年提出,虽然在知名度上,黎曼猜想不及费尔马猜想和哥德巴赫猜想,但它在数学上的重要性要远远超过后两者,是当今数学界重要的数学难题。

霍奇猜想,霍奇猜想可以说难道几乎所有的数学家,猜想表达能够将特定的对象形状,在不断增加维数的时候粘合形成一起,看似非常的巧妙,但在实际的作过程中必须要加上没有几何解释的部件。

BSD猜想,BSD猜想,全称贝赫和斯维纳通戴尔猜想,它描述了阿贝尔簇的算术性质与解析性质之间的联系。

欧几里得第五公设,欧几里得第五公设,同一平面内的两条直线与第三条直线相交,若其中一侧的两个内角之和小于二直角,则该两直线必在这一侧相交。因它与平行公理是等价的,所以又称为欧几里得平行公设,简称平行公设。

NP完全问题,NP完全问题可以说是一个听着就很复杂的数学问题,简单的讲所有的完全多项式在非确定性的问题,都可以被转化为名为满足性的逻辑运算问题,数学家们猜想的是到底有没有一个确定性的算大。

世界数学七大难题是什么?

世界数学七大难题:NP完全问题、霍奇猜想、庞加莱猜想、黎曼设、杨.米尔斯存在性和质量缺口、纳卫尔.斯托可方程、BSD猜想。

1、NP完全问题

例:在一个周六的晚上,参加了一个盛大的晚会。由于感到局促不安想知道这一大厅中是否有你已经认识的人。宴会的主人提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟你就能向那里扫视,并且发现宴会的主人是正确的。

如果没有这样的暗示你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。

2、霍奇猜想

二十世纪的数学家们发现了,研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,可以把给定对象的形状通过把维数,不断增加简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广。

终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形的对象进行分类时取得巨大的进展。不幸的是在这一推广中,程序的几何出发点变得模糊起来。在某种意义下必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完好的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

3、庞加莱猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面如果想象同样的橡皮带,以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。

苹果表面是“单连通的”而轮胎面不是。大约在一百年以前庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起数学家们就在为此奋斗。

4、黎曼设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中这种素数的分布并不遵循任何有规则的模式;然而德国数学家黎曼(1826~1866)观察到。

素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。的黎曼设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

5、杨.米尔斯存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨.米尔斯方程的预言,已经在全世界范围内的实验室中所履行的高能实验中得到证实。

布罗克哈文、斯坦福、欧洲粒子物理研究所和驻波。描述重粒子、又在数学上严格的方程没有已知的解。被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”设,从来没有得到一个数学上令人满意的证实。问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

6、纳卫尔.斯托可方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶.斯托克斯方程的解,来对它们进行解释和预言。

虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶.斯托克斯方程中的奥秘。

7、BSD猜想

数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的。

不存在一般的方法来确定这样的方程是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通.戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解)。如果z(1)不等于0,那么只存在着有限多个这样的点。

千禧年七大数学难题是什么?

P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。

黎曼设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。

庞加莱猜想:任何单连通闭3维流形同胚于3维球。

Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。

Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。

Nier-Stokers方程组:(在适当的边界及初始条件下)对3维Nier-Stokers方程组证明或反证其光滑解的存在性。

Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。

相关内容解释:

千年数学会议在的法兰西学院举行。会上,97年菲尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年问题”的解决与获奖作了严格规定。

每一个“千年问题”获得解决并不能立即得奖。任何解决必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得一百万美元的。

世界七大数学难题有哪七大?

世界七大数学难题

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。

世界近代三大数学难题:

1、费尔马大定理

2、四色问题

3、哥德巴赫猜想

现在世界七大数学难题有哪七大??

1.P问题对NP问题2.霍奇猜想3.庞加莱猜想4.黎曼设5.杨-米尔斯存在性和质量缺口6.纳维叶-斯托克斯方程的存在性与光滑性7.贝赫和斯维讷通-戴尔猜想

世界七大世纪数学难题

据电数学界关注上百年的重大难题——庞加莱猜想,近日被科学家完全。哈佛大学、数学家、菲尔兹奖得主丘成桐3日在科学院晨兴数学研究中心宣布,在美、俄等国科学家的工作基础上,中山大学朱熹平和旅美数学家、清华大学曹怀东已经证明了这一猜想。“这就像盖大楼,前人打好了基础,但后一步——也就是‘封顶’工作是由人来完成的。”丘成桐说,“这是一项大成就,比哥德巴赫猜想重要得多。”_“这是次在数学期刊上给出了猜想的完整证明,成果极其突出。”数学家杨乐说

_在美国出版的《数学期刊》6月号以专刊的方式,刊载了长达300多页、题为《庞加莱猜想暨几何化猜想的完全证明:汉密尔顿-佩雷尔曼理论的应用》的长篇论文

任何一个封闭的三维空间,只要它里面所有的封闭曲线都可以收缩成一点,这个空间就一定是一个三维圆球——这就是法国数学家庞加莱于1904年提出的猜想。庞加莱猜想和黎曼设、霍奇猜想、杨-米尔理论等一样,被并列为七大数学世纪难题之一。2000年5月,美国的克莱数学研究所为每道题悬赏百万美元求解

100多年来,无数的数学家关注并致力于证实庞加莱猜想。20世纪80年代初,美国数学家瑟斯顿因为得出了对庞加莱几何结构猜想的部分证明结果而获得菲尔兹奖。之后,美国数学家汉密尔顿在这个猜想的证明上也取得了重要进展。2003年,数学家佩雷尔曼更是提出了解决这一猜想的要领。运用汉密尔顿、佩雷尔曼的理论,朱熹平和曹怀东次成功处理了猜想中“奇异点”的难题,发表了300多页的论文,给出了庞加莱猜想的完全证明。丘成桐指出,这一证明意义重大,将有助于人类更好地研究三维空间,对物理学和工程学都将产生深远的影响