一看就学会恒压供水变频器设置方法

随着在供水行业的投资力度加大,水厂运行自动化水平不断提高,PLC在供水行业应用逐步增多。恒压供水变频器就是采用PLC作为中心控制单元,利用变频器与PID结合,根据系统状态可快速调整供水系统的工作压力,达到恒压供水的目的,提高了系统的工作稳定性,得到了良好的控制效果以及明显的节能效果。一些专用的恒压供水变频器,还具备一定的防水、防尘能力。下面就让小编来向你介绍下恒压供水变频器的相关知识以及恒压供水变频器设置方法。

变频恒压供水系统设计 变频恒压供水系统设计难点变频恒压供水系统设计 变频恒压供水系统设计难点


变频恒压供水系统设计 变频恒压供水系统设计难点


变频恒压供水系统设计 变频恒压供水系统设计难点


一、恒压供水变频器工作原理

根据用户要求,先设定给水压力值,然后通电运行,压力传感器监测管网压力,并转为电信号送至可编程或微机,经分析处理,将信号传至变频器来控制水泵运行,当用水量增加时,其输出的电压及频率升高,水泵转数升高,出水量增加,当水量减小时,水泵转数降低,减少出水量,使管网压力维持设定压力值,,在多台泵运行时,逐机软启动,由变频转工频至压力流量满足为止,实现了水泵的循环控制,当夜间小流量运行时,可通过变频水泵来维持工作,变频给水泵可以停机保压。

二、恒压供水变频器控制原理

1、调速原理

交流电机转速特性:n=60f(1-s)/p,其中n为电机转速,f为交流电频率,s为转率,p为极对数。

电机选定之后s、p则为定值,电机转速n和交流电频率f成正比,使用变频器来改变交流电频率,即可实现对电机变频无级调速。

2、根据离心泵的负载工作原理可知:

流量与转速成正比:Q∝N

转矩与转速的平方成正比:T∝N2

功率与转速的三次方成正比:P∝N3

而且变频调速自身的能量损耗极低,在各种转速下变频器输入功率几乎等于电机轴功率,由此可知在使用变频调速技术供水时,系统中流量变化与功率的关系:

P变=N3P额=Q3P额

采用出口阀控制流量的方式,电机在工频运行时,系统中流量变化与功率的关系:P阀=(0.4+0.6Q)P额

其中,P为功率

N为转速

Q为流量

例如设定当前流量为水泵额定流量的60%,则采用变频调速时P变=Q3P额=0.216P额,而采用阀门控制时P阀=(0.4+0.6Q)P额=0.76P额,节电=(P阀-P变)/P阀=71.6%。

由此可见从理论计算结果可以看到节能效果非常显著,而且在实际运行中小区变频恒压供水技术比传统的加压供水系统还有自动控制恒压、无污染等明显优势。

流量%90%80%70%60%50%

节电率%0%22.5%41.8%61.5%71.6%82.1%

而且新型的小区变频恒压供水系统能自动地控制一至多台主泵和一台休眠泵的运行。在管网用水量减少到单台主泵流量的约1/6-1/8时,系统自动停止主泵,启动小功率的休眠泵工作,保证系统小流量供水,解决小流量甚至零流量供水时大量电能的浪费问题,从运行控制上进一步节能。

根据反馈原理:要想维持一个物理量不变或基本不变,就应该引这个物理量与恒值比较,形成闭环系统。我们要想保持水压的恒定,因此就必须引入水压反馈值与给定值比较,从而形成闭环系统。但被控制的系统特点是非线性、大惯性的系统,在控制和PID相结合的方法,在压力波动较大时使用模糊控制,以加快响应速度;在压力范围较小时采用PID来保持静态精度。这通过PLC加智能仪表可时现该算法,同时对PLC的编程来时现泵的工频与变频之间的切换。实践证明,使用这种方法是可行的,而且造价也不高。

要想维持供水网的压力不变,根据反馈定理在管网系统的管理上安装了压力变送器作为反馈元件,由于供水系统管道长、管径大,管网的充压都较慢,故系统是一个大滞后系统,不易直接采用PID调节器进行控制,而采用PLC参与控制的方式来实现对控制系统调节作用。

三、恒压供水变频器特点

1、节电:变频恒压供水系统的显著优点就是节约电能,节能量通常在10-40%。从单台水泵的节能来看,流量越小,节能量越大。优化的节能控制软件,使水泵实现限度地节能运行。

2、卫生节水:根据实际用水情况设定管网压力,自动控制水泵出水量,减少了水的跑、漏现象;系统实行闭环供水后,用户的水全部由管道直接供给,取消了水塔、天面水池、气压罐等设施,避免了用水的"二次污染",取消了水池定期清理的工作。

3、运行可靠:变频恒压供水系统实现了系统供水压力稳定而流量可在大范围内连续变化,从而可以保证用户任何时候的用水压力,不会出现在用水高峰期热水器不能正常使用的情况由变频器实现泵的软起动,使水泵实现由工频到变频的无冲击切换,防止管网冲击、避免管网压力超限,管道破裂。

4、控制灵活:分段供水,定时供水,手动选择工作方式。

5、自我保护功能完善:新型的小区变频恒压供水系统具备了过流、过压、欠压、欠相、短路保护、瞬时停电保护、过载、失速保护等。

急求PLC变频恒压供水

基于PLC的恒压供水系统设计

摘要

随着生活水平的日趋提高,新技术和先进设备的应用

,使给供水设计得到了发展的机遇。于是选择一种符合各方面规范、卫生安全而又经济合理的供水方式,对我们给供水设计带来了新的挑战。本系统采用PLC进行逻辑控制,采用带PID功能的变频器进行压力调节,系统存在工作可靠,使用方便,压力稳定,无冲击等优越性。

本设计恒压变频供水设备由PLC、变频器、传感器、低压电气控制柜和水泵等组成。通过PLC、变频器、继电器、接触器控制水泵机组运行状态,实现管网的恒压变流量供水要求。设备运行时,压力传感器不断将管网水压信号变换成电信号送入PLC,经PLC运算处理后,获得控制参数,通过变频器和继电器控制元件自动调整水泵机组高效率地运行。供水系统的主要包括水泵的自动启停控制、供水压力的测量与调节、系统主管道水压的;系统水处理设备运转的监视、控制;故障及异常状况的报警等。现场站内的按预先编制的软件程序来满足自动控制的要求,即根据供水管的高/低水压位信号来控制水泵的启/停及进水控制阀的开关,并且进行溢水和枯水的预警等。

文中详细介绍了所选PLC机、变频器、传感器的特点、各高级单元的使用及设定情况,给出了系统工作流程图、程序设计流程图及设计程序。

可编程;变频器;传感器

目录

1前言

11.1供水系统发展过程及现状

11.2供水系统的概述

21.2.1.变频恒压供水系统主要特点:

21.2.3.恒压供水设备的主要应用场合:

21.2.4.恒压供水技术实现:

32

系统总体设计方案

42.1系统设计方案

42.1.1

系统控制要求

42.1.2

控制方案

42.1.3运行特征

52.1.4

系统方案

52.2可编程(PLC)的特点及选型

72.2.1

PLC特点及应用

72.2.2可编程的选型

82.2.3.PLC

CPM2A模拟量输入/输出单元

12

2.3变频器选型及特点

15

2.3.1

ABB产品信息:

15

2.3.2

变频节能理论:

15

2.3.3.变频恒压供水系统及控制参数选择:

16

2.3.4.变频恒压供水系统的优点及体现

17

2.4

远传压力表

19

2.4.1

主要技术指标

19

2.4.2结构原理

19

2.5

系统控制流程设计

20

2.5.1系统组成及作用

20

2.5.2

系统运行过程

20

3软件设计

24

3.1

系统中检测及控制开关I/O分配

24

3.2

I/O地址及标志位分配表

25

3.3

流程图

28

3.4

程序设计:

29

4.结论

43

致谢

44

参考文献

45

采用PLC控制的变频器一拖三恒压供水技术方案

1、先画出电气原理图。每个电机都用接触器控制可以用工频电源拖动,变频器下端也有三个接触器控制可以分别带3个电机。

2、画出PLC和变频器的硬件接线图;

3、用PLC检测管道压力,压力不够调节输出频率设定值,使频率增加,达到50赫兹后等待一段时间,如果压力依然不够,把台电机切换到工频下拖动,再有变频器拖动第二台,。。。。。。当压力增高时,与此相反。

4、编程

基于PLC单片机的变频调速恒压控制是现代供水控制系统的主要方式.它利用PLC、传感器、电气控制设备、变频器及水泵机组组成闭环控制系统,使供水管网压力保持恒定.由于具有

自动化程度高、高效节能、安全卫生、维护方便等特点,在小区供水和工厂供液供水控制中得到广泛应用,

变频恒压供水设计中为什么都是三台水泵,而不是两台或是四台?

生活水泵配置是节约能源及安全供水为目的,一般配置是两大一小,两台大泵一备一用(当一台坏另一台还能工作达安全供水目的)。当供水到高期峰用大泵供水或大泵加小泵一起供水,当到供水底谷期,只开一台小泵供水,将供水量少耗能比大泵要小。

供水设计中,水泵的台数是由供水量及供水安全性来决定的。

多数是n+1形式设置泵的运行与备用。

你这问题你问的有水准的.

就和眼睛为什么有2个.不是3个.4个一样.

其实应该是按照规模来算的.大点的3个肯定不够的..

说明他是半吊子,这个必须考虑节能问题,而且还得考虑成本问题。系统稳定问题

如果流量小了就一用一备,流量大了就两用一备,三用一备

天 帅 供 水

一台工频一台变频一台备用

单水泵变频恒压供水系统论文

1 引言

供水系统在人们生活和工业应用当中是必不可少的。随着人们生活水平的提高和现代工业的发展,人们对供水系统的质量和可靠性的要求越来越高。变频

能够很好的满足现代供水系统的要求。

在变频

出现以前,有以下供水方式:

(1) 单台恒定转速泵的供水系统

这种供水方式是水泵从蓄水池中抽水加压直接送往用户,影响了城市公用水管管网压力的稳定,水泵整日不停运转。这种系统简单、造价,但耗电,水压不稳,供水质量极。

(2) 恒定转速泵加水塔(或高位水箱)的供水系统

这种供水方式是由水泵先向水塔供水,再由水塔向用户供水。水塔注满水后水泵停止工作,水塔水位低于某一高度时水泵启动,水泵处于断续工作状态中。这种方式比前一种省电,供水压力比较稳定,但基建设备投资大,占地面积大,水压不可调,供水质量。

(3)恒定转速泵加气压罐的供水系统

这种供水方式是利用封闭的气压罐代替水塔蓄水,通过检测罐内压力来控制水泵的开与停。当罐中压力降到压力下限时,水泵启动;当罐中压力升到压力上限时,水泵停止。这种方式,设备的成本比水塔要低很多。但是电机起动频繁,易造成电机的损坏,能耗大。

变频

不仅克服了过去供水系统的缺点,而且有其自身的优点。此系统采用了先进的s7-200plc和变频器mm440,

具有低廉的价格和强大的指令,可以满足多种多样的小规模的控制要求,变频器mm440具有很高的运行可靠性、功能的多样性和全面而完善的控制功能。这种供水方式不仅提高了供水系统的稳定性和可靠性,而且实现水泵的无级调速,使供水压力能够跟踪系统所需水压,提高了供水质量。同时变频器对水泵采取软启动,启动时冲击电流很小,启动能耗小。

2 供水系统的基本特性

供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。

管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。

扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。

图1 供水系统的基本特性

3 变频恒压供水系统的构成及工作原理

3.1 系统的构成

变频恒压供水系统采用西门子的

plc作为,变频器mm440是频率调节器,

和电动机作为执行机构,压力传感器作为控制的反馈元件。

plc选用内部控制模块cpu224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid模块。cpu224有14路输入/10路输出,对于小型的控制系统而言够用。pid模块使用方便,在软件中只需要配置pid的每个参数。

与mm440的电源输入口连接,经过变频器变频后的交流电接

,带动水泵转动。s7-200数字输出口输出控制信号到

,两端连接的是工频或变频的

,主要起接通或断开

与。s7-200的模拟输出口输出控制电压信号给mm440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给s7-200的模拟输入口。系统的结构如图2所示。

图2 变频恒压供水系统的总体框图

3.2 系统的工作原理

变频恒压供水系统是由三相异步电动机带动水泵旋转来供水,通过变频器调节输入交流电的频率而调节异步电动机的转速,从而改变水泵的出水流量来调节供水系统的压力。因此,供水系统变频的实质是三相异步电动机的变频调速,通过改变定子供电频率来改变同步转速而实现调速的。

的转速为:

其中:

n0为

同步转速;

n为

转子转速;

f为异步电机的定子输入交流电的频率;

s为异步电机的转率;

p为异步电机的极对数。

由上式可知,当异步电机的极对数p不变时,电机转子转速n与定子输入交流电频率f成正比。

当系统启动,运行在自动模式时,此时手动模式无效。系统按照给定的水压进行设定,plc根据给定的水压自动调节交流电的频率,跟踪给定的供水压力。在用水量高峰时期,系统的用水量猛增,扬程降低,供水量不足,供水水压下降,1#电机输入交流电的频率会升高,以提高供水水压。当交流电的频率达到频率,供水水压仍然小于设定的水压时,1#电机会自动切换到工频状态下,同时2#电机启动并工作在变频状态。在夜间,系统的用水量递减,扬程升高,供水量过大,2#电机会退出变频状态,1#电机由工频切换到变频状态,并不断调节交流电频率,系统终要维持供水的设定压力。当系统运行在手动模式时,自动模式无效。在自动模式出现问题或系统在维护期间时,系统才会采用手动模式。用户根据需要,可以从plc的输入开关输入信号,选择1#电机或2#电机运行在工频状态。

变频恒压供水系统的功能要求:系统的供水压力能够准确跟踪给定供水压力(稳态误在5%内);可以自动进行自动模式/手动模式切换。

系统的控制原理框图如图3所示。压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏信号,经过plc(s7-200)pid模块pi调节后发出控制电压信号,送到变频器mm440的模拟输入调节端口。送到变频器mm440的模拟电压信号与连接到变频器mm440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的

,其设计是按照两个电机就可以完全满足供水要求。

图3 变频恒压供水系统的控制原理框图

4 硬件

4.1 主电路

变频恒压供水系统就是利用异步电机拖动水泵的。系统的主电路由电源开关q、熔断器fu、交流接触器km、

kr等组成,采用了一台变频器切换控制两台电机,1#电机和2#电机可以在工频和变频状态下进行切换,交流接触器的通断由s7-200的输出口控制。主电路如图4所示。

图4 系统主电路图

4.2 控制电路

控制电路主要由plc(s7-200)、变频器mm440等组成,plc外围电路接线图如图5所示。总电源开关为q,0为plc的程序启动按钮,与plc的i0.0输入口相连接,当按下0时,i0.0为“1”,plc程序启动。k1为系统的自动模式开关,当k1接通时,i0.1为“1”,交流接触器km1闭合,系统自动运行。当变频器的频率达到上限频率时,i0.5为“1”,1#泵和电机切换到工频状态下,2#泵和电机变频启动。当变频器的频率达到下限频率时,i0.6为“1”,2#电机停止运行,1#电机由工频切换到变频状态下。i0.5和i0.6的状态由变频器输入。k2为系统的手动模式开关,当k2接通时,i0.2为“1”,交流接触器km1断开,系统不能自动运行,用户可以根据需要接通k3或k4来选取1#电机或2#电机工频运行。km1为控制1#电机和2#电机在自动模式下运行的交流接触器,km2为控制1#电机在变频下运行的交流接触器,km3为控制1#电机在工频下运行的交流接触器,km4为控制2#电机在变频下运行的交流接触器,km5为控制2#电机在工频下运行的交流接触器。

图5 plc外围接线图

5 程序设计

5.1 plc程序设计

plc程序设计的主要流程如图6所示。合上开关q,按下起动按钮0,plc程序复位。当合上开关k1,i0.1为“1”,系统在自动模式下运行,交流接触器km1接通,系统将根据程序跟踪设定供水压力。

图6 主程序流程图

当用户用水量递增,变频器达到频率50hz,供水压力还没有达到设定的供水压力时,mm440输出高电平到i0.5。此时,q0.1为“0”, q0.2为“1”,交流接触器km2断开,km3接通,1#电机由变频切换到工频。定时器计时3s,变频器停止,变频器的频率由频率50hz逐渐下降,3s后q0.3为“1”,2#电机接到变频器开始变频运行。设置延迟时间主要原因是让变频器的频率下降,软启动静止的2#电机,减小电机启动电流,避免电机烧毁。

当用户用水量减小,变频器达到下限频率30hz,供水压力还是高于设定的供水压力时,mm440输出高电平到i0.6。此时,q0.4为“0”,km2断开,2#电机退出变频并逐渐停止。同时q0.1为“1”,q0.2为“0”,交流接触器km2接通,km3断开,1#电机由工频切换到变频。下限频率设定在30hz主要原因:在供水系统中,转速过低时会出现水泵的全扬程小于基本扬程(实际扬程)形成水泵“空转”的现象。在多数情况下,下限频率应定为30hz~35hz。

当合上开关k2,系统在手动模式下运行,交流接触器km1断开。用户可以根据需要,合上开关k3,交流接触器km3接通,选择1#电机在工频下运行。合上开关k4,交流接触器km5接通,选择2#电机在工频下运行。

5.2 变频器mm440的参数配置

变频器mm440主要使用的是模拟输入口ain1+和ain1-,模拟电压信号输入后通过

得到数字信号。由plc模拟输出口输出模拟控制电压信号,输入到变频器的模拟口,变频器的频率和控制电压一一对应。系统使用变频器的模拟端口,频率应该设置为50hz,频率为30hz。mm440的参数配置如附表所示。

附表 mm440的参数配置

6 结束语

应用西门子plc(s7-200)内部的pid模块和变频器mm440的无极调速控制恒压供水系统,高效节能,调速供水效果突出,抗干扰能力强。同时采用变频器对电机实行软起动,减少了设备损耗,延长了水泵、电机设备的使用寿命。以供水水压为控制对象的闭环控制,稳态误小,动态响应快,运行稳定。实验效果表明,采用plc(s7-200)和变频器mm440构成的变频恒压供水系统,具有很强的实用性,体现了变频调速恒压供水的技术优势,为供水领域开辟了切实有效的途径。

参考文献

[1] 李光,谢欢,王直杰. 高压变频器模拟量控制电路及功能设计[j]. 电气传动自动化,2008,38(7):63-68.

[2] 彭旭昀. 一种基于变频器pid功能的plc控制恒压供水系统[j]. 机电工程技术,2005,34(10):54-56.

[3] 陈新恩,王永祥. 基于s7-200的变频调速恒压供水系统[j]. 制造业电气,2006,25(6):37-39.

[4] 朱玉堂. 变频恒压供水系统的研究开发与应用[d]. 杭州:浙江大学,2005.

请问变频器在恒压供水中的应用原理和方法是怎样的?

PLC通过A/D,转换模块采集压力传感器的输出信号。从监测供水压力,再由PLC控制变频器和接触器调节水泵的工作状态,使供水压力保持在一个恒定的压力范围,水泵系统,根据不同用水量四台水泵循环变频运行,及工频运行等来恒定水压。系统通过设定参数,变频运行频率,压力的大小,欠压超时,水位报警指示等来控制系统的运行,以西门子可编程序和变频器为核心控制输出,在水泵的出水泵管道上安装一个远传压力传感器,用于检测管道压力,并把出口压力变成4~20mA的摸拟信号,送到PLC的A/D转换输入端,经过PLC内部的PID运算把给定偏值送到变频器,以控制输出频率的大小,从而改变水泵的电机转速,达到控制管道压力恒定的目的。

当实际管道压力小于给定压力时,变频器输出频率上升电机转速加快,管道压力开始升高;反之,变频器频率降低,电机转速减少,管道压力降低。如果上下调整多次,直到偏值为零。这样就能保持压力值恒定。

预期目标:

(1)系统供水时,恒压运行。

(2)四台水泵根据恒压的需要,采取先开先停的原则接入和退出,水泵能自动的循环运行和循环投切。

(3)在用水量小的情况下,如果一台水泵连续运行时间超过一天,则要切换下一台水泵,系统具有倒泵功能,避免一台水泵长时间运行。

(4)要有完善的报警和指示功能

(5)对泵的作要有手动控制功能,手动在应急或检修时使用。

变频器应用于恒压供水演示,工作原理很简单

恒压供水变频器设置方法

主要设置水泵转速,功率。加减速时间、频率下限(一般是贰5HZ),频率上限50hz()。还有工作压力,保护压力(超过设定压力自动停泵)。 变频恒压供水是指在供水管中用水量发生变化时,出口压力保持不变的供水方式。供水管的出口压力值是根据用户需求确定的。传统的恒压供水方式是采用水塔、高水位箱、气压罐等设施实现的

种方式:

1、变频器在停止状态或者运行状态下,按住递加键或者递减键3秒,变频器上屏显示当前设定压力;

2、通过递加键或递减键修改压力到目标值,松开即可;

分享电工基础知识,学习变频器PID控制

高层建筑变频恒压供水系统设计

这个具体很复杂的,不是一句两句能说清楚,一你要知道系统的运行方式才能设计控制!这个要学的东西还是挺多的,二是你要知道控制的时候考试因素!如果楼不是太高,采用一套变频控制的话,这个控制相对就简单一些,能根据压力变送器识别信号判断设备的启停,超压保护,再者水位低时停机!有的变频还对水箱进水进行控制,防止无水或水箱水不足!