学python要多久?

为了解timeit模块,我们将查看一些小实例。定有3个函数function_a()、 function_b()、function_c(), 3个函数执行同样的计算,但分别使用不同的算法。如果将这些函数放于同一个模块中(或分别导入),就可以使用timeit模块对其进行运行和比较。下面给出的是模块使用的代码:

零基础进行Python学习的话,如果选择自学,一般学习周期在一年半左右。选择进行培训的话,学习Python周期一般在五到六个月左右,不过学习的种类不同,班级不同,培训周期也是存在一定异的。

python实训心得 PYTHON实训心得2000字python实训心得 PYTHON实训心得2000字


python实训心得 PYTHON实训心得2000字


cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))

注意事项:

任何知识都是基础入门比较快,达到精通的程序是需要时日的,这是一个逐渐激烈的过程。

精通任何一门编程语言,都需要通过大量的实践来积累经import unittest验,解决遇到的各种疑难问题,看别人的源码,分享自己的分码的这个过程,才能够精通Python的方方面面。从编程的一开始,就应该不断的动手去编写代码,不停的去实践,不停的去修改,不停的总结经验,最终才能熟能生巧,达到精通。

对于任何一门语言来说,零基础入门虽然是比较快的,但是达到精通也是具有一定时间的,是一个非常激烈的过程。

想要完全精通一门课程并不是一件简单的事情,需要大量项目来进行实战,只有真正动手实践才可以更好地掌握这门课程。所以说想要学习Python更快,积累更多的项目经验,那么参加Python培训班才是最合适的选择。

一般情况下来讲,python培训学习周期在5-6个月之间。

有什么比较好的python教程?

解决方案:

一,买报个培训班,找个靠谱的培训班,由老师手把手教学。一本好书。

不一定非要一直遍敲代码边学习,个人经验,当代码逻辑很清晰,经过之前C语言刷题的锻炼之后,看书学习新的编程语言效果也是非常好,状态好的时候,半天就能学100多页。这里可以看看python丶基础教程,笨方法学python。

二,注重repeats = 1000实践。

三,注意需求。

你学python,想用它做什么?可以去一些项目网站,例如国内的shiyanlou,去跟着做做一个个真正的项目,还有很多书上有很多实战项目,跟着做下来。然后,很必要的,自己在这个项目上添加上自己的一些想法,将它变成自己的项目,这一点提高非常大

四,注意网络资源。

五,记录自己的学习

零基础可以学习python吗,这个学起来难不难?

atomic[4]= 第三阶段:深度学习-782

链接:

提取码:238d

零基础学python课程。Python是目前的动态脚本语言之一。本课程由浅入深,全面、系统地介绍了使用Python进行开发的各种知识和技巧。 包括Python环境的安装和配置、Python的基本语法、模块和函数、内置数据结构、字符串和文件的处理、正则表达式的使用、异常的捕获和处理、面向对象的语言特性和设计、Python的数据库编程、Tkinter GUI库的使用、HTML应用、XML应用、Django网页开发框架的使用、测试驱动开发模式应用、Python中的进程和线程、Python系统管理、网络编程、Python图像处理、Python语言的扩展和嵌入以及Windows下Python开发等。

课程目录:

pyt1 0.003 0.003 1.661 1.661 :1 ( )hon的发展历史与版本

python的安装

python程序的书写规则

基础数据类型

变量的定义和常用作

序列的概念

字符串的定义和使用

......

一般Python编程语言的初学者,要从基础数据类型开始了解Python的动作机制,再到各个类型的作方法的掌握,就可以对Python有一个比较好的入门了,这个过程根据每个人的不同,大约需要几周到数月。

如何快速的学好Python?

1、不要盲目去学。如果你对Python这个行业什么都不了解,比如:不知道未来发展趋势、不知道学习什么、不知道具体的学习规划学习路线等,只是一味的买书看书、看视频,到了中期阶段就容易萌生放弃的想法,因为你并不知道自己在学什么、有什么用,这是初学者的误区。

2、不要闭门造车。有部分同学认为Python简单,就在网上购买相关的书籍、视频教程,却不知道和别人交流、没有人指导,认为自己什么都可以搞定,而且很多知识不会了,直接就过去了并没有深究,而这种学习态度也注定学习是失败的。

以上的回答希望对你有所帮助

Python入门简单,主要是因为Python语言简单易学,Python既有函数式语言的简单性也有面向对象语言的灵活性,对于初学者来说学习Python非常容易,没有任何编程语言的基础通过一段时间也可以掌握好Python语言。Python与C++、Ja、PHP、Go 或其他编程语言相比语法要简单很多。Python适合和数据打交道对数据处理相对其他编程语言比较方便,内置的数据结构也比较少。

Python有大量的库,Python语言一个重要的特点就是可以通过各种库使用来降低开发难度,比如说机器学习领域的Numpy、Matplotlib、Scipy、pandas等库可以使用,提升开发效率。

零基础可以学习,通过专业的机构学习可以轻松掌握,选择

零基础可以学习python,

我也是零基础学习的python。

python也不难。

如以下与其他语言对比: 一.输出文字

python: print('helloworld!')

ja: System.out.println("helloworld!");

c++: std::cout<<"helloworld!"<

c: printf("helloworld!");

二.函数:

python: def funtion():

ja: void funtion(){}

c++: void funtion(){}

由此可见,python难度不大。

教程:

关于教程我同意楼上的。

Python语言具有简单易学、通俗易懂、容易上手等优势,相对于其他的编程语言来说,Python语言更加简单,适合零基础人员学习,初学者的,相对于入门门槛较低,不过Python具有丰富强大的第三方库,想要完全掌握还是具有一定难度所在的;具体难学不难学,需要更具每个人的接受能力、学习能力以及学习方式来决定,如果具有合适的学习路线、老师带着学习,自己多用心,是可以掌握好Python这门课程的。

0基础怎么入门的,不管大家之前有没有学过编程语言,学习这个最重要的就是先把这个语言的基础学好。基础怎么学好呢? 买书,买一本python的书

看视频,跟着视频里的进度一边学,一边敲代码。

线上找其他资料,,博客之类的平台都有很多资料

零基础也是可以学习的,只要是自己有兴趣,那么也就能够学的进去,这样就不算困难

如何自学 Python

ncalls tottime percall cumtime percall filename:lineno(function)

Python是什么?

List reduced from 44 to 1 due to restriction

Python是一种计算机程序设计语言。你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Ja语言,适合初学者的Basic语言,适合网页编程的JaScript语言等等。

为什么要学Python?

不同的编程语言,干同一个活,编写的代码量,距也很大。比如,完成同一个任务,C语言要写1000行代码,Ja只需要写100行,而Python可能只要20行。

学Python有用吗?

连Google、Facebook都在大规模使用Python,你就不用担心学了会没用。

我该怎么学Python?

首先,得拥有一本书,别犹豫了,这本书就是为你准备的。然后,每天能抽出半个小时学习。

《从零开python语言的特点始学python》购买链接:

加油加油~~~

python实训目的

atomic.ap5129003 function calls in 12.987 CPU secondspend(1999)

Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于的、大型项目的开发,所有实训的目的都是为了以后更好的适应工作。

suite.addTest(doctest.DocTestSuite(blocks))

优就业python培训怎么样?

>>> string = "ABCDE"

Python是主流课程,优就业研究院开发自己的课程对接企业需要,就业合作的企业也挺多,还是很不错的。定期会有合作企业过来办双选会

因此,如果你已经用 Python 实现了算法实验,并想把系统部署到生产环境中,那么将其转化为 Ja 代码可能是有必要的。当然,这需要一定的时间和精力来进行代码转换和调试,但是从长远来看,这有利于提高系统的可维护性和可扩展性。

pyt像百度经验一样,也可以多逛逛知乎,CSDN,博客园,看看大牛们都是怎么学习的,很多方法都会有介绍,自己有选择的学习。hon是现在市场上比较主流的编程语言,语法清晰、入门简单、容易上手,广受大家的喜欢和关注,想要学习python,现在培训机构有很多家,具体选择哪一家可以根据自身情况来决定,可以亲自去试听一下。

python实现算法实验,再用ja语言实现系统可行吗?

典型情况下,测试套件是通过创建unittest.TestCase的子类实现的,其中每个名称 以“test”开头的方法都是一个测试用例。如果我们需要完成任何创建作,就可以在一个名为setUp()的方法中实现;类似地,对任何清理作,也可以实现一个名为 tearDown()的方法。在测试内部,有大量可供我们使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(对于测试浮点数很有用)、assertRaises() 以及更多,还包括很多对应的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。

是可以的。虽然 Python 和 Ja 是不同的编程语言,但是它们都拥有许多相同的机器学Python入门简单,想要精通却并不容易,你一定要注意这几点:习和在深入讨论profiling之前,注意一些易于学习和使用的Python程序设计习惯是有意义的,并且对提高程序性能不无裨益。这些技术都不是特定于某个Python版本的, 而是合理的Python程序设计风格。,在需要只读序列时,使用元组而非列表; 第二,使用生成器,而不是创建大的元组和列表并在其上进行迭代处理;第三,尽量使用Python内置的数据结构 dicts、lists、tuples 而不实现自己的自定义结构,因为内置的数据结构都是经过了高度优化的;第四,从小字符串中产生大字符串时, 不要对小字符串进行连接,而是在列表中累积,将字符串列表结合成为一个单独的字符串;第五,也是一点,如果某个对象(包括函数或方法)需要多次使用属性进行访问(比如访问模块中的某个函数),或从某个数据结构中进行访问,那么较好的做法是创建并使用一个局部变量来访问该对象,以便提供更快的访问速度。算法库,如 Scikit-learn、TensorFlow、Keras、Mahout 等,因此可以在这些库中选择一个共享的算法,并在不同的编程语言中使用。

通常,在 Python 中实现算法更为普遍,因为它有着大量的数据分析和机器学习库,并且编写 Python 代码比较容易。但是,当需要对模型进行大规模的部署或性能优化时,Ja 可能是更好的选择,因为它可以提供更高效的内存管理和计算性能。

python值得学吗

以这种方式使用cProfile模块对于识别值得进一步研究的区域是有用的。比如,这里 我们可以清晰地看到function_b()需要耗费更长的时间,但是我们怎样获取进一步的详细资料?我们可以使用cProfile.run("function_b()")来替换对function_b()的调用。或者可以保存完全的profile数据并使用pstats模块对其进行分析。要保存profile,就必须对命令行进行稍许修改:python3 -m cProfile -o profileDataFile programOrModule.py。 之后可以对 profile 数据进行分析,比如启动IDLE,导入pstats模块,赋予其已保存的profileDataFile,或者也可以在控制台中交互式地使用pstats。

Python是一门易学易用的语言。相比于其他编程语言,Python语法简单明了,代码可读性强,容易上手。Python的语言特点使得编写代码变得更加轻松愉快,也更容易维护和扩展。

Ran 3 tests in 0.244s

Python具有广泛的应用场景。Python最初被设计为一种面向对象的脚本语言。如今,Python已经成为数据科学领域的工具之一,被广泛应用于数据分析、机器学习、人工智能等领域。同时,Python在网络编程、Web开发、游戏开发等领域也有着广泛的应用。

Python拥有强大的库和工具支持。Python库和工具的丰富度是Python的优势之一。Python拥有大量的第三方库和工具,包括NumPy、Pandas、Matplotlib、Scikit-learn等。这些库和工具可以帮助程序员更快地编写代码,提高开发效率。

Python社区庞大且活跃。Python社区是一个庞大且活跃的社区,拥有大量的贡献者和用户。这个社区提供了大量的开源项目和资源,可我们现在将查看TestAtomic类的实现。对通常的子类(不包括unittest.TestCase 子类),不怎么常见的是,没有必要实现初始化程序。在这一案例中,我们将需要建立 一个方法,但不需要清理方法,并且我们将实现两个测试用例。以帮助程序员更好地学习和使用Python。

Python有良好的文档和教程。Python文档和教程非常详细和全面,可以帮助初学者更好地理解Python的语法和特性。同时,Python社区也提供了大量的教程和视频,可以帮助初学者更快地入门。

除了以上优点,Python还有一些不足之处。首先,Python的运行速度相对较慢,因为Python是解释型语言。其次,Python的一些特性可能会让程序员感到困惑,例如Python的缩进规则和动态类型等。

如何快速学习Python开发?

ncalls ("调用的次数")列列出了对指定函数(在filename:lineno(function)中列出) 的调用次数。回想一下我们重复了 1000次调用,因此必须将这个次数记住。tottime (“总的时间”)列列出了某个函数中耗费的总时间,但是排除了函数调用的其他函数内部花费的时间。个percall列列出了对函数的每次调用的平均时间(tottime // ncalls)。 cumtime ("累积时间")列出了在函数中耗费的时间,并且包含了函数调用的其他函数内部花费的时间。第二个percall列列出了对函数的每次调用的平均时间,包括其调用的函数耗费的时间。

目前国内python人才需求呈大规模上升,薪资水平也水涨船高。学python的人大多非科班出身。很多大学并没有开设此专业,因此就出现了大量的人才缺口,未来python就业形势,是大幅度上升的,加上互联网行业正在进入成长爆发期,所以现在开始学习python的是明智的。

如果你想要专业的学习Python,更多需要的是付出时间和精力,一般在2w左右,4-6个月左右的时间。应该根据自己的实际需求去【千锋】实地看一下,先好好试听之后,再选择适合自己的。只要努力学到真东西,前途自然不会。

上傲梦直播学吧注意和条并不冲突,多敲代码才是王道。可以去codeforce上做题,虽然都是英文的,但是可以用python提交,此外还有计丶蒜客,pythontip。后两者更加简单。多多训练,解决问题。,我也在学,一对一,贵一点,但收获颇丰,很不错的,望采纳

自学(书籍),如果遇到自己不能解答的问题,上Bing或Baidu搜去(有上Google)。去培训机构只能被动TDD的一个关键点是,当我们想添加一个功能时——比如为类添加一个方法—— 我们首次为其编写一个测试用例。当然,测试将失败,因为我们还没有实际编写该方法。现在,我们编写该方法,一旦方法通过了测试,就可以返回所有测试,确保我们新添加的代码没有任何预期外的副作用。一旦所有测试运行完毕(包括我们为新功能编写的测试),就可以对我们的代码进行检查,并有理有据地相信程序行为符合我们的期望——当然,前提是我们的测试是适当的。接受,纯粹是烧钱。

后端编程Python3-调试、测试和性能剖析(下)

如果程序运行很慢,或者消耗了比预期内要多得多的内存,那么问题通常是选择的算法或数据结构不合适,或者是以低效的方式进行实现。不管问题的原因是什么, 的方法都是准确地找到问题发生的地方,而不只是检査代码并试图对其进行优化。 随机优化会导致引入bug,或者对程序中本来对程序整体性能并没有实际影响的部分进行提速,而这并非解释器耗费大部分时间的地方。

单元测试(Unit Testing)

Random listing order was used

为程序编写测试——如果做的到位——有助于减少bug的出现,并可以提高我们对程序按预期目标运行的信心。通常,测试并不能保证正确性,因为对大多数程序而言, 可能的输入范围以及可能的计算范围是如此之大,只有其中最小的一部分能被实际地进 行测试。尽管如此,通过仔细地选择测试的方法和目标,可以提高代码的质量。

大量不同类型的测试都可以进行,比如可用性测试、功能测试以及整合测试等。这里, 我们只讲单元测试一对单独的函数、类与方法进行测试,确保其符合预期的行为。

比如,我们编写了一个函数,该函数在特定的索引位置插入一个字符串,可以像下面这样开始我们的TDD:

"""Returns a copy of string with insert inserted at the ition

>>> result =[]

>>> for i in range(-2, len(string) + 2):

... result.append(insert_at(string, i,“-”))

>>> result[:5]

['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']

>>> result[5:]

['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']

"""

对不返回任何参数的函数或方法(通常返回None),我们通常赋予其由pass构成的一个suite,对那些返回值被试用的,我们或者返回一个常数(比如0),或者某个不变的参数——这也是我们这里所做的。(在更复杂的情况下,返回fake对象可能更有用一一对这样的类,提供mock对象的第三方模块是可用的。)

运行doctest时会失败,并列出每个预期内的字符串('ABCD-EF'、'ABCDE-F' 等),及其实际获取的字符串(所有的都是'ABCD-EF')。一旦确定doctest是充分的和正确的,就可以编写该函数的主体部分,在本例中只是简单的return string[:ition] + insert+string[ition:]。(如果我们编写的是 return string[:ition] + insert,之后 string [:ition]并将其粘贴在末尾以便减少一些输入作,那么doctest会立即提示错误。)

Python的标准库提供了两个单元测试模块,一个是doctest,这里和前面都简单地提到过,另一个是unittest。此外,还有一些可用于Python的第三方测试工具。其中最的两个是nose ()与py.test (), nose 致力于提供比标准的unittest 模块更广泛的功能,同时保持与该模块的兼容性,py.test则采用了与unittest有些不同的方法,试图尽可能消除样板测试代码。这两个第三方模块都支持测试发现,因此没必要写一个总体的测试程序——因为模块将自己搜索测试程序。这使得测试整个代码树或某一部分 (比如那些已经起作用的模块)变得很容易。那些对测试关切的人,在决定使用哪个测试工具之前,对这两个(以及任何其他有吸引力的)第三方模块进行研究都是值 得的。

创建doctest是直截了当的:我们在模块中编写测试、函数、类与方法的docstrings。 对于模块,我们简单地在末尾添加了 3行:

if __name__ =="__main__":

import doctest

doctest.testmod()

在程序内部使用doctest也是可能的。比如,blocks.py程序(其模块在后面)有自己函数的doctest,但以如下代码结尾:

if __name__== "__main__":

main()

这里简单地调用了程序的main()函数,并且没有执行程序的doctest。要实验程序的 doctest,有两种方法。一种是导入doctest模块,之后运行程序---比如,在控制台中输 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用类似于 C:Python3 lpython.exe 这样的形式替代python3)。如果所有测试运行良好,就没有输出,因此,我们可能宁愿执行python3-m doctest blocks.py-v,因为这会列出每个执行的doctest,并在给出结果摘要。

另一种执行doctest的方法是使用unittest模块创建单独的测试程序。在概念上, unittest模块是根据Ja的JUnit单元测试库进行建模的,并用于创建包含测试用例的测试套件。unittest模块可以基于doctests创建测试用例,而不需要知道程序或模块包含的任何事物——只要知道其包含doctest即可。因此,为给blocks.py程序制作一个测试套件,我们可以创建如下的简单程序(将其称为test_blocks.py):

import doctest

import blocks

suite = unittest.TestSuite()

runner = unittest.TextTestRunner()

print(runner.run(suite))

注意,如果釆用这种方法,程序的名称上会有一个隐含的约束:程序名必须是有效的模块名。因此,名为convert-incidents.py的程序的测试不能写成这样。因为import convert-incidents不是有效的,在Python标识符中,连接符是无效的(避开这一约束是可能的,但最简单的解决方案是使用总是有效模块名的程序文件名,比如,使用下划线替换连接符)。这里展示的结构(创建一个测试套件,添加一个或多个测试用例或测试套件,运行总体的测试套件,输出结果)是典型的机遇unittest的测试。运行时,这一特定实例产生如下结果:

...

.............................................................................................................

OK

每次执行一个测试用例时,都会输出一个句点(因此上面的输出最前面有3个句点),之后是一行连接符,再之后是测试摘要(如果有任何一个测试失败,就会有更多的输出信息)。

如果我们尝试将测试分离开(典型情况下是要测试的每个程序和模块都有一个测试用例),就不要再使用doctests,而是直接使用unittest模块的功能——尤其是我们习惯于使用JUnit方法进行测试时ounittest模块会将测试分离于代码——对大型项目(测试编写人员与开发人员可能不一致)而言,这种方法特别有用。此外,unittest单元测试编写为的Python模块,因此,不会像在docstring内部编写测试用例时受到兼容性和明智性的限制。

unittest模块定义了 4个关键概念。测试夹具是一个用于描述创建测试(以及用完之后将其清理)所必需的代码的术语,典型实例是创建测试所用的一个输入文件,删除输入文件与结果输出文件。测试套件是一组测试用例的组合。测试用例是测试的基本单元—我们很快就会看到实例。测试运行者是执行一个或多个测试套件的对象。

unittest模块进行了很好的归档,并且提供了大量功能,但在这里我们只是通过一 个非常简单的测试套件来感受一下该模块的使用。这里将要使用的实例,该练习要求创建一个Atomic模块,该模块可以用作一 个上下文管理器,以确保或者所有改变都应用于某个列表、或字典,或者所有改变都不应用。作为解决方案提供的Atomic.py模块使用30行代码来实现Atomic类, 并提供了 100行左右的模块doctest。这里,我们将创建test_Atomic.py模块,并使用 unittest测试替换doctest,以便可以删除doctest。

在编写测试模块之前,我们需要思考都需要哪些测试。我们需要测试3种不同的数据类型:列表、与字典。对于列表,需要测试的是插入项、删除项或修改项的值。对于,我们必须测试向其中添加或删除一个项。对于字典,我们必须测试的是插入一个项、修改一个项的值、删除一个项。此外,还必须要测试的是在失败的情况下,不会有任何改变实际生效。

结构上看,测试不同数据类型实质上是一样的,因此,我们将只为测试列表编写测试用例,而将其他的留作练习。test_Atomic.py模块必须导入unittest模块与要进行测试的Atomic模块。

创建unittest文件时,我们通常创建的是模块而非程序。在每个模块内部,我们定义一个或多个unittest.TestCase子类。比如,test_Atomic.py模块中仅一个单独的 unittest-TestCase子类,也就是TestAtomic (稍后将对其进行讲解),并以如下两行结束:

if name == "__main__":

unittest.main()

这两行使得该模块可以单独运行。当然,该模块也可以被导入并从其他测试程序中运行——如果这只是多个测试套件中的一个,这一点是有意义的。

如果想要从其他测试程序中运行test_Atomic.py模块,那么可以编写一个与此类似的程序。我们习惯于使用unittest模块执行doctests,比如:

import test_Atomic

suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)

runner = unittest.TextTestRunner()

pnnt(runner.run(suite))

这里,我们已经创建了一个单独的套件,这是通过让unittest模块读取test_Atomic 模块实现的,并且使用其每一个test()方法(本实例中是test_list_success()、test_list_fail(),稍后很快就会看到)作为测试用例。

def setUp(self):

self.original_list = list(range(10))

我们已经使用了 unittest.TestCase.setUp()方法来创建单独的测试数据片段。

def test_list_succeed(self):

s = self.original_list[:]

with Atomic.Atomic(1 0.000 0.000 12.987 12.987 {built-in mod exec}s) as atomic:

atomic.insert(2, -5)

del atomic[5]

atomic.insert(0, -9)

self.assertEqual(s,

[-9, 0, 1, -5, 2, -782, 5, 6, 7, 8, 9, 1999])

def test_list_fail(self):

s = self.original_list[:]

with self.assertRaises(AttributeError):

with Atomic.Atomic(s) as atomic:

atomic.insert(2, -5)

del atomic[5]

atomic[4] = -782

atomic.poop() # Typo

self.assertListEqual(s, self.original_list)

这里,我们直接在测试方法中编写了测试代码,而不需要一个内部函数,也不再使用unittest.TestCase.assertRaised()作为上下文管理器(期望代码产生AttributeError)。 我们也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。

正如我们已经看到的,Python的测试模块易于使用,并且极为有用,在我们使用 TDD的情况下更是如此。它们还有比这里展示的要多得多的大量功能与特征——比如,跳过测试的能力,这有助于理解平台别——并且这些都有很好的文档支持。缺失的一个功能——但nose与py.test提供了——是测试发现,尽管这一特征被期望在后续的Python版本(或许与Python 3.2—起)中出现。

性能剖析(Profiling)

Python标准库提供了两个特别有用的模块,可以辅助调査代码的性能问题。一个是timeit模块——该模块可用于对一小段Python代码进行计时,并可用于诸如对两个或多个特定函数或方法的性能进行比较等场合。另一个是cProfile模块,可用于profile 程序的性能——该模块对调用计数与次数进行了详细分解,以便发现性能瓶颈所在。

if __name__ == "__main__":

t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))

sec = t.timeit(repeats) / repeats

print("{function}() {sec:.6f} sec".format(locals()))

赋予timeit.Timer()构造子的个参数是我们想要执行并计时的代码,其形式是字符串。这里,该字符串是“function_a(X,Y)”;第二个参数是可选的,还是一个待执行的字符串,这一次是在待计时的代码之前,以便提供一些建立工作。这里,我们从 __main__ (即this)模块导入了待测试的函数,还有两个作为输入数据传入的变量(X 与Y),这两个变量在该模块中是作为全局变量提供的。我们也可以很轻易地像从其他模块中导入数据一样来进行导入作。

调用timeit.Timer对象的timeit()方法时,首先将执行构造子的第二个参数(如果有), 之后执行构造子的个参数并对其执行时间进行计时。timeit.Timer.timeit()方法的返回值是以秒计数的时间,类型是float。默认情况下,timeit()方法重复100万次,并返回所 有这些执行的总秒数,但在这一特定案例中,只需要1000次反复就可以给出有用的结果, 因此对重复计数次数进行了显式指定。在对每个函数进行计时后,使用重复次数对总数进行除法作,就得到了平均执行时间,并在控制台中打印出函数名与执行时间。

function_a() 0.001618 sec

function_b() 0.012786 sec

function_c() 0.003248 sec

在这一实例中,function_a()显然是最快的——至少对于这里使用的输入数据而言。 在有些情况下一一比如输入数据不同会对性能产生巨大影响——可能需要使用多组输入数据对每个函数进行测试,以便覆盖有代表性的测试用例,并对总执行时间或平均执行时间进行比较。

有时自己的代码进行计时并不是很方便,因此timeit模块提供了一种在命令行中对代码执行时间进行计时的途径。比如,要对MyModule.py模块中的函数function_a()进行计时,可以在控制台中输入如下命令:python3 -m timeit -n 1000 -s "from MyModule import function_a, X, Y" "function_a(X, Y)"(与通常所做的一样,对 Windows 环境,我们必须使用类似于C:Python3lpython.exe这样的内容来替换python3)。-m选项用于Python 解释器,使其可以加载指定的模块(这里是timeit),其他选项则由timeit模块进行处理。 -n选项指定了循环计数次数,-s选项指定了要建立,一个参数是要执行和计时的代码。命令完成后,会向控制台中打印运行结果,比如:

1000 loops, best of 3: 1.41 msec per loop

之后我们可以轻易地对其他两个函数进行计时,以便对其进行整体的比较。

cProfile模块(或者profile模块,这里统称为cProfile模块)也可以用于比较函数 与方法的性能。与只是提供原始计时的timeit模块不同的是,cProfile模块地展示 了有什么被调用以及每个调用耗费了多少时间。下面是用于比较与前面一样的3个函数的代码:

if __name__ == "__main__":

我们必须将重复的次数放置在要传递给cProfile.run()函数的代码内部,但不需要做任何创建,因为模块函数会使用内省来寻找需要使用的函数与变量。这里没有使用显式的print()语句,因为默认情况下,cProfile.run()函数会在控制台中打印其输出。下面给出的是所有函数的相关结果(有些无关行被省略,格式也进行了稍许调整,以便与页面适应):

1003 function calls in 1.661 CPU seconds

1000 1.658 0.002 1.658 0.002 MyModule.py:21 (function_a)

1 0.000 0.000 1.661 1.661 {built-in mod exec}

1 0.487 0.487 22.700 22.700 : 1 ( )

1000 0.011 0.000 22.213 0.022 MyModule.py:28(function_b)

5128000 7.048 0.000 7.048 0.000 MyModule.py:29( )

1000 0.00 50.000 0.005 0.000 {built-in mod bisectjeft}

1 0.000 0.000 22.700 22.700 {built-in mod exec}

1000 0.001 0.000 0.001 0.000 {built-in mod len}

1000 15.149 0.015 22.196 0.022 {built-in mod sorted}

1 0.205 0.205 12.987 12.987 :l ( )

1000 6.472 0.006 12.782 0.013 MyModule.py:36(function_c)

5128000 6.311 0.000 6.311 0.000 MyModule.py:37( )

这种输出信息要比timeit模块的原始计时信息富有启发意义的多。我们立即可以发现,function_b()与function_c()使用了被调用5000次以上的生成器,使得它们的速度至少要比function_a()慢10倍以上。并且,function_b()调用了更多通常意义上的函数,包括调用内置的sorted()函数,这使得其几乎比function_c()还要慢两倍。当然,timeit() 模块提供了足够的信息来查看计时上存在的这些别,但cProfile模块允许我们了解为什么会存在这些别。正如timeit模块允许对代码进行计时而又不需要对其一样,cProfile模块也可以做到这一点。然而,从命令行使用cProfile模块时,我们不能地指定要执行的 是什么——而只是执行给定的程序或模块,并报告所有这些的计时结果。需要使用的 命令行是python3 -m cProfile programOrModule.py,产生的输出信息与前面看到的一 样,下面给出的是输出信息样例,格式上进行了一些调整,并忽略了大多数行:

10272458 function calls (10272457 primitive calls) in 37.718 CPU secs

10.000 0.000 37.718 37.718 :1 ( )

10.719 0.719 37.717 37.717 :12( )

1000 1.569 0.002 1.569 0.002 :20(function_a)

1000 0.011 0.000 22.560 0.023 :27(function_b)

5128000 7.078 0.000 7.078 0.000 :28( )

1000 6.510 0.007 12.825 0.013 :35(function_c)

5128000 6.316 0.000 6.316 0.000 :36( )

在cProfile术语学中,原始调用指的就是非递归的函数调用。

下面给出的是一个非常短的控制台会话实例,为使其适合页面展示,进行了适当调整,我们自己的输入则以粗体展示:

$ python3 -m cProfile -o profile.dat MyModule.py

$ python3 -m pstats

Welcome to the profile statistics browser.

% read profile.dat

profile.dat% callers function_b

Function was called by...

ncalls tottime cumtime

:27(function_b) <- 1000 0.011 22.251 :12( )

profile.dat% callees function_b

Function called...

ncalls tottime cumtime

:27(function_b)->

1000 0.005 0.005 built-in mod bisectJeft

1000 0.001 0.001 built-in mod len

1000 1 5.297 22.234 built-in mod sorted

profile.dat% quit

输入可以获取命令列表,后面跟随命令名可以获取该命令的更多信息。比如, stats将列出可以赋予stats命令的参数。还有其他一些可用的工具,可以提供profile数据的图形化展示形式,比如 RunSnakeRun (), 该工具需要依赖于wxPython GUI库。

使用timeit与cProfile模块,我们可以识别出我们自己代码中哪些区域会耗费超过预期的时间;使用cProfile模块,还可以准确算岀时间消耗在哪里。

以上内容部分摘自视频课程 05后端编程Python-19调试、测试和性能调优(下) ,更多实示例请参照视频讲解。跟着张员外讲编程,学习更轻松,不花钱还能学习真本领。