高中数学导数运算公式是什么?

3.y=a^x

高中数学导数公式

高数导数公式表 大学高数导数公式表高数导数公式表 大学高数导数公式表


高数导数公式表 大学高数导数公式表


复合函数导数公式

1、原函数:y=c(c为常数)

导数:y'=0

2、原函数:y=x^n

导数:y'=nx^(n-1)

4、原函数:y=cotx

导数:y'=-1/sin^2x

5、原函数:y=sinx

导数:y'=cosx

6、原函数:y=cosx

导数:导数:y'=1/cos^2xy'=-sinx

7、原函数:y=a^x

导数:y'=a^xlna

8、原函数:y=e^x

9、原函数:y=logax

导数:y'=logae/x

10、原函数:y=lnx

导数:y'=1/x

主要有函数和的导数求导法则、函数乘积的求导法则,以及函数的高阶导数公式等。

基本求导公式18个

(4)(cot(x))'=-csc^2(x)

1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h].即函数与自变量的商在自变量趋于0时的极限,就是导数的定义。兄敏其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数。

例题

2、f(x)=a的导数,f'(x)=0,a为常数.即常数的导数等于0;这个导数其实是一个塌宽特殊的幂函数的导数。就是当幂函羡衫枝数的指数等于1的时候的导数。

sin(π+α)=-sinα;cos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(-α)=sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π-α)=sinαcos(π-α)

可以根据幂函数的求导公式求得。

求高等数学的所有公式。

(1)定24个基本求导公式可以分成三类。义

这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数)y'=02.y=x^ny'=nx^(n-1)3.y=a^xy'=a^xlna y=e^xy'=e^x4.y=logaxy'=logae/x y=lnxy'=1/x5.y=sinxy'=cosx6.y=cosxy'=-sinx7.y=tanxy'=1/cos^2x8.y=cotxy'=-1/sin^2x9.y=arcsinxy'=1/√1-x^210.y=arccosxy'=-1/√1-x^211.y=arctanxy'=1/1 x^212.y=arccotxy'=-1/1 x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^xy'=e^x和y=lnxy'=1/x这两个结果后能用复合函数的求导给予证明。3.y=a^x,⊿y=a^(x ⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1 β)。所以(a^⊿x-1)/⊿x=β/loga(1 β)=1/loga(1 β)^1/β显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1 β)^1/β=e,所以limβ→01/loga(1 β)^1/β=1/logae=lna。把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。可以知道,当a=e时有y=e^xy'=e^x。4.y=logax ⊿y=loga(x ⊿x)-logax=loga(x ⊿x)/x=loga[(1 ⊿x/x)^x]/x ⊿y/⊿x=loga[(1 ⊿x/x)^(x/⊿x)]/x因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1 ⊿x/x)^(x/⊿x)=logae,所以有lim⊿x→0⊿y/⊿x=logae/x。可以知道,当a=e时有y=lnxy'=1/x。这时可以进行y=x^ny'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,所以y'=e^nlnx(nlnx)'=x^nn/x=nx^(n-1)。5.y=sinx ⊿y=sin(x ⊿x)-sinx=2cos(x ⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x ⊿x/2)sin(⊿x/2)/⊿x=cos(x ⊿x/2)sin(⊿x/2)/(⊿x/2)所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x ⊿x/2)lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx6.类似地,可以导出y=cosxy'=-sinx。7.y=tanx=sinx/cosx y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x sin^2x)/cos^2x=1/cos^2x8.y=cotx=cosx/sinx y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x9.y=arcsinx x=siny x'=cosy y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^210.y=arccosx x=cosy x'=-siny y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-(2)例题x^211.y=arctanx x=tany x'=1/cos^2y y'=1/x'=cos^2y=1/sec^2y=1/1 tan^2x=1/1 x^212.y=arccotx x=coty x'=-1/sin^2y y'=1/x'=-sin^2y=-1/csc^2y=-1/1 cot^2y=-1/1 x^2另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与4.y=u土v,y'=u'土v'5.y=uv,y=u'v uv'均能较快捷地求得结果。自己上网去查吧,很多啊

高中数学导数8个公式是什么?

3、原函数:y=tanx

常用导数公式:

y'=1/x.这时可以进行y=x^n

1、y=c(c为常数) y'=0

3、y=a^x y'=a^xlna,y=e^x y'=e^x

4、y=logax y'=logae/x,y=lnx y'=1/x

5、y=sinx y'=cosx

6、y=cosx y'=-sinx

7、y=tanx y'=1/cos^2x

8、y=cotx y'=-1/sin^2x

导函数

如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间,导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。

进一步判断则需要知道导函数在附近的符号,对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之导数:y'=e^x后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。

高中数学导数公式?

(5)(sec(x))'=sec(x)tan(x)

导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。

一、什么是导数?

二、基本初等函数的导数公式

高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:

高中数学基本初等函数导数公式

三、导数加、减、乘、除四则运算法则

导数加、减、乘、除四则运算法则公式如下图所示:

1、加减法运算法则

导数的加、减法运算法则公式

导数的乘、除法运算法则公式

【注】分母g(x)≠0.

为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。

简化后的导数四则运算法则公式

【注】分母v≠0.

四、复合函数求考完再去求求老师,应该就能过了导公式(“链式法则”)

求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。

(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。

【例】求y=sin(2x)的导数。

解:y=sin(2x)可看成y=sinu与u=2x的复合函数。

所以,[sin(2x)]'=(sinu)'×(2x)'

=cosu×2=2c三、未定式的计算osu=2cos(2x)。

五、可导函数在一点处的导数值的物理意义和几何意义

(1)物理意义:可导函数在该点处的瞬时变化率。

(2)几何意义:可导函数在该点处的切线斜率值。

【注】一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。

高等数学中的高阶导数有哪些基本公式?

7.y=tanx

1、常数函数的高阶导数为零:

(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。

(k)'=0,其中k为常数。

9.y=arcsinx

2、幂函数的高阶导数:

(x^n)'=nx^(n-1),其中n为正整数。

3、指数函数的高阶导数:

(e^x)'=e^x。

4、对数函数的高阶导数:

(ln(x))'=1/x。

5、三角函数的高阶导数:

(1)(sin(x))'=cos(x)

(2)(cos(x))'=-sin(x)

(3)(tan(x))'=sec^2(x)

(6)(csc(x))'=-csc(x)cot(x)

6、反三角函数的高阶导数:

(1)(arcsin(x))'=1/sqrt(1-x^2)

(2)(arccos(x))'=-1/sqrt(1-x^2)

(3)(arctan(x))'=1/(1+x^2)

(4)(arccot(x))'=-1/(1+x^2)

(5)(arcsec(x))'=1/(|x|sqrt(x^2-1))

高阶导数的进阶公式与求解方法:

1、进阶公式

(1)乘积法则的推广

乘积法则可以推广到多个函数相乘的情况下,即(fgh)'=f'gh+fg'h+fgh',其中f,g,h是可导函数。

(2)链式法则的推广

链式法则可以推广到多个函数复合的情况下,即(f(g(h(x))))'=f'(g(h(x)))g'(h(x))h'(x),其中f,g,h是可导函数。

(3)Leibniz公式

Leibniz公式给出了多元函数的高阶偏导数的计算方法。对于n个自变量的函数,其m阶偏导数可以通过多次求导来计算,每次求导时,对于每个自变量,都可以选择是否对其求导,然后将所有可能的求导结果相乘。

(4)高阶导数的递推公式

对于一些特殊函数,可以通过递推关系来计算高阶导数。例如,指数函数的n阶导数仍然是指数函数,三角函数的n阶导数可以通过递推公式来计算。

2、求解方法

(1)直接使用导数定义进行计算

根据导数的定义,可以通过求取极限的方式计算n阶导数。

(2)使用泰勒展开公式

(3)使用递推关系:对于一些特殊的函数,可以通过递推关系来计算高阶导数。例如,对于指数函数和三角函数等常见函数,它们的高阶导数可以通过递推公式来计算。

高等数学上下册的主要公式

(6)(arccsc(x))'=-1/(|x|sqrt(x^2-1))

公式这4.隐函数求导东西知道上也打不清楚

你上网搜一.极限定义一下吧

高等数学不是看看公式就行的

奉劝你还是看看书吧

认认真真看一周

2

是不是要补考啊,哈哈。

还是自己慢慢看,慢慢找吧。

自己归纳的,看看有没有你要的。

不知道这个网址值不值150分:

高数求导

高阶求导基本公式内容如下:

导数公式(x^n)'=nx^(n-1)

这里的n是与x无关的常数

而题目中的x^sin2、y=x^n y'=nx^(n-1)2x

底数和指数 都是x的12.y=arccotx函数

所以不能直接用公式,只能对数恒等式得到x^sin2x=e^(lnx sin2x)之后

高数公式及定义、经典例题总结

1.等价无穷小

还有一个1-cosx~1/2x^2

2.常见导数公式

3.常见高阶导数

4.麦克劳林展开式

5.不定积分

导数就是dy/dx,微分dy,可导是

可微是

1.数列极限

(1)概念

此概念的意思是数列的极限值为A,有一个常数大于零,这个常数可以是1.2或者1.5,反正大于0就行,有一个正整数n,这个正整数很大,可以想象成无穷大,当n>N时,|X-A|就是数列的极限值A-A小于常数恒成立

2.函数极限

1).趋近于常数的类型

(1)概念

函数的极限值是A,有一个常数大于零,当0<|x-a|<常数的意思是x趋近于a,都有|f(x)-A|<常数的意思是函数f(x)的极限值是A,趋近值和本身的值是无关的,由此可以衍生出极限和间断

函数左极限和右极限不一样则表示该点极限不存在

2).趋近于无穷的类型

(1)定义|x|>X的意思是x趋近于无穷,其他和上一个类型一样

3.无穷小量

二、极限的性质

有三个性质分别是1.性(就是在某一点的左极限和右极限值必须相等,否则不存在)2.有界行(就是如果定义域是[a,b]那它的上界和下界分别是a和b,如果是(a,b)那就求a+的极限值,如果不是无穷则有上界,再求b-,不是无穷页数有界,上界下界是根据递增递减判断)3.局部保号性(就是在一个很小的范围内如果函数的左边大于0,右边也大于零,它本身也大于0,反之亦然)

三、极限存在的性质

包括1.夹逼定理(就是左边等于a右边也等于a那它本身就等于a)2.单调有界性准则(就是极限要有一个界,不能是无穷)3.特殊极限的性质

1).夹逼定理

2)1.导数的定义.单调有界性

3).特殊极限的性质

小补充:对于这种题型给它抬到肩膀上就好算了

四、函数连续

1.定义(就是左极限等于右极限等于函数本身,否则就是间断)

2.例题

五、间断

因为(sinu)'=cosu,(2x)'=2,1.分类

2.定义(就是不极限的话基本就是间断了)

3.例题

求函例题数的导数就是求函数的斜率

1)两种定义方式

2).导数分左右

3).可导一定连续,连续不一定可导

2.可微和微分

1).定义:可微如图所示,微分就是dy

2).例题

3.导数的四则运算

3.复合函数求导

5.反函数求导(关于y=x对称)

高等数学导数公式谁有哇?给我一份 谢谢要全面 谢谢

2、乘除法运算法则

1.y=c(c为常数)

泰勒展开公式可以将一个函数表示为无穷阶可导的多项式,从而可以通过对多项式进行求导来计算高阶导数。

y'=0

导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。

2.y=x^n

y'=nx^(n-1)

y'=a^xlna

y=e^x

y'=e^x

4.y=logax

y'=logae/x

y=lnx

y'=1/x

5.y=sinx

y'=cosx

6.y=cosx

y'=-sinx

y'=1/cos^2x

8.y=cotx

y'=-1/sin^2x

y'=1/√1-x^2

10.y=arccosx

y'=-1/√1-x^2

11.y=arctanx

y'=1/1+x^2

y'=-1/1+x^2

在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]&8226;g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2.y=u/v,y'=(u'v-uv')/v^2

3.y=f(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0.用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0.2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况.在得到

y=e^x

y'=e^x和y=lnx

y'=1/x这两个结果后能用复合函数的求导给予证明.3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算.由设的辅助函数可以知道:⊿x=loga(1+β).所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

显然,当⊿x→0时,β也是趋向于0的.而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna.把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna.可以知道,当a=e时有y=e^x

y'=e^x.4.y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x.可以知道,当a=e时有y=lnx

y'=nx^(n-1)的推导了.因为y=x^n,所以y=e^ln(x^n)=e^nlnx,所以y'=e^nlnx&8226;(nlnx)'=x^n&8226;n/x=nx^(n-1).5.y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx

6.类似地,可以导出y=cosx

y'=-sinx.7.y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

8.y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

x=siny

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

10.y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

11.y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与

4.y=u土v,y'=u'土v'

5.y=uv,y=u'v+uv