如何化简指数与对数的运算公式?

由公式x=e^lnx(lnx=e的某个值次方等于x,e^(e的某个值次方)等于x,即x=e^lnx) 转化x=e^lnx (m^x代替x,m^x为任意指数,任意指数的值也同等于x)

指数公式和对数公式 指数公式与对数公式指数公式和对数公式 指数公式与对数公式


指数公式和对数公式 指数公式与对数公式


m^x=e^lnm^x (m^x=x)

m^x=e^[(lnm)x ](幂法则 loga X^y=ylogaX)

以此任意指数值m^x都可以转变以e为底的对数函数。

指数函数,y=ax(a>0,且a≠1),注意与幂函数的区别。

对数函数y=logax(a>0,且a≠1)。

指数函数y=ax与对数函数y=logax互为反函数。

扩展资料

1、指数运算

有理数指数及其运算是本章的基础内容,要明确运算法则,化简或求值是本章知识点的主要呈现方式。

在进行幂和根式的化简时,一般是先将根式化成幂的形式,并尽可能地统一成分数指数幂的形式,再利用幂的运算性质进行化简、求值或计算,以达到化繁为简的目的。

2、对数运算

(1)同底对数化简的常用方法:将同底的两对数的和()化成积(商)的对数;将积(商)的对数拆成对数的和(),根据题目的条件选择恰当的方法。

(2)对常用对数的化简要创设情境,充分利用lg 5+lg 2=1来求解。

(3)对多重对数符号的化简,应从内向外逐层化简求值。

(4)对数的运算性质,要注意只有当式子中所有的对数符号都有意义时,等式才成立。

所有指数对数函数计算公式

指数

指数在数学中代表着次方。

具体的说,指数是有理数乘方的一种运算形式,它表示的是几个相同因数相乘的关系如:

计算方法:

①同底数幂的乘法:同底数幂相乘,底数不变,指数相加。

②同底数幂的除法:同底数幂相除,底数不变,指数相减。

③幂的幂,底数不变,指数相乘。

④幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。

指数函数

一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数(exponential function) 。也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。

对数

定义

如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。

①特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。

②称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。

③零没有对数。

④在实数范围内,负数无对数。在复数范围内,负数是有对数的。

计算公式:

①②

③④

⑤⑥

⑦⑧

向左转|向右转

指数和对数的转换公式是什么?

对数函数与指数函数的互换公式是y=a^x,log(a)y=x 。

1、对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。

2、因此指数函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0

3、对数函数和指数函数都是重要的基本初等函数之一。一般地,函数y=logaX叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。

4、一般地,函数y=a^x叫做指数函数,函数的定义域是R。在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。