拉格朗日中值定理的发展简史

人们对拉格朗日中值定理的认识可以上溯到公元前古希腊时代。古希腊数学家在几何研究中得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底”。这正是拉格朗日定理的特殊情况,古希腊数学家阿基米德正是巧妙地利用这一结论,求出抛物弓形的面积.。

拉格朗日中值定理的发展简史:古希腊数学家在几何研究中得到结论拉格朗日中值定理的发展简史:古希腊数学家在几何研究中得到结论


拉格朗日中值定理的发展简史:古希腊数学家在几何研究中得到结论


柯西中值定理

设函数f(x),g(x)满足

(1)在闭区间[a,b]上连续;

(2)在开区间(a、b)内可导;

(3)对任一x∈(a,b)有g'(x)≠0,

则存在ξ∈(a,b), 使得

[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ)

中值定理有哪些啊?

中值定理通常包括罗尔定理、拉格朗日中值定理、柯西中值定理,他们不但是研究函数形态的基础,同时也是洛必达法则及泰勒公式的理论基础。

中值定理是反映函数与导数之间联系的重要定理,也是微积分学的理论基础,在许多方面它都有重要的作用,在进行一些公式推导与定理证明中都有很多应用。

在中值定理中,中值指的是,定理的结论里面一定与所讨论区间[a,b]的某一个值有关,这个值统称为中值,是区间[a,b]其中的一个值。

中值定理的前世今生

人们对微分中值定理的认识可以上溯到公元前古希腊时代,古希腊数学家在几何研究中,得到如下结论,过抛物线弓形的顶点的切线必平行于抛物线弓形的底,这正是拉格朗日定理的特殊情况。希腊数学家阿基米德正是巧妙地利用这一结论,求出抛物弓形的面积。

意大利卡瓦列里在《不可分量几何学》的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实,曲线段上必有一点的切线平行于曲线的弦。这是几何形式的微分中值定理,被人们称为卡瓦列里定理。

三大中值定理关系

三大中值定理关系是:可以认为罗尔定理是拉格朗日中值定理的特例,拉格朗日中值定理又是柯西中值定理的特例.因为,在柯西中值定理中令g(x)=x,即得到拉格朗日中值定理;在拉格朗日中值定理中增加条件 F(a)=F(b),即得到罗尔定理。

拉格朗日中值定理:中值定理是微积分学中的基本定理,由四部分组成。内容是说一段连续光滑曲线中必然有一点,它的斜率与整段曲线平均斜率相同。中值定理又称为微分学基本定理,拉格朗日定理,拉格朗日中值定理,以及有限改变量定理等。

柯西中值定理:柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一。其几何意义为,用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。该定理可以视作在参数方程下拉格朗日中值定理的表达形式。

积分中值定理:积分中值定理,是一种数学定律。分为积分中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。这个定理的几何意义为:若f(x)>0,xE [a,b],则由x轴、x=a、x=b及曲线y=f(x)围成的曲边梯形的面积等于一个长为b-a,宽为f()的矩形的面积。

微分中值定理的历史与发展

人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在

几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的

底”,这正是拉格朗日定理的特殊情况.希腊数学家阿基米德(Archimedes)

正是巧妙地利用这一结论,求出抛物弓形的面积.

意大利卡瓦列里(Calieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理.

人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,法国数学家费马(Fermat) 在《求值和小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.16年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了后一个微分中值定理.

什么是柯西中值定理。

柯西中值定理,是的数学定理,证明了微积分学基本定理即牛顿-莱布尼茨公式。利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。在柯西中值定理中,若取g(x)=x时,则其结论形式和拉格朗日中值定理的结论形式相同。因此,拉格朗日中值定理为柯西中值定理的一个特例;反之,柯西中值定理可看作是拉格朗日中值定理的推广。函数单调性,若函数在某区间上单调增(或减),则在此区间内函数图形上切线的斜率均为正(或负),也就是函数的导数在此区间上均取正值(或负值)。因此我们可通过判定函数导数的正负来判定函数的增减性。