三角函数值表 cos三角函数表
完整初中三角函数值表
(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0.866025404 二分之根号3cos45=0.707106781 二分之根号2cos60=0.5cos90=0tan0=0tan30=0.577350269 三分之根号3tan45=1tan60=1.732050808 根号3tan90=无cot0=无cot30=1.732050808 根号3cot45=1cot60=0.577350269 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。附:三角函数值表sin0=0,
三角函数值表 cos三角函数表
三角函数值表 cos三角函数表
三角函数值表 cos三角函数表
sin15=(√6-√2)/4 ,
sin30=1/2,
sin45=√2/2,
sin60=√3/2,
sin75=(√6+√2)/2 ,
sin90=1,
sin105=√2/2(√3/2+1/2)
sin120=√3/2
sin135=√2/2
sin150=1/2
sin165=(√6-√2)/4
sin180=0
sin270=-1
sin360=0
完整初中三角函数值表如下图所示:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
扩展资料:
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦()”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成文时被误解为”弯曲”、”凹处”,语是 ”dschaib”。十二世纪,文被转译成拉丁文,这个字被意译成了”sinus”。
“初中数学必背三角函数公式、三角函数值”主要包括正弦、余弦、正切函数的定义式和关系式。
(1)∠A的正弦值=∠A的对边:斜边,记作sinA=a/c。 (2)∠A的余弦值=∠A的邻边:斜边,记作cosA=b/c。
sin30°=1/2 sin45°= √2/2 sin60°=√3/2cos30°=√3/2 cos 45°= √2/2 cos60°=1/2tan30°=√3/3 tan45°=1 tan60°==√3
三角函数值表
三角函数值表:
数关系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系
tanα=sinα/cosα cotα=cosα/sinα
正弦二倍角公式
sin2α = 2cosαsinα
推导:
sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
拓展公式:
sin2A=2sinAcosA=2tanAcos2A=2tanA/[1+tan2A]
余弦二倍角公式
余弦二倍角公式有三组表示形式,三组形式等价:
1.Cos2a=Cos2a-Sin2a=[1-tan2a]/[1+tan2a]
2.Cos2a=1-2Sin2a
3.Cos2a=2Cos2a-1
推导:
cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A
正切二倍角公式
tan2α=2tanα/[1-tan2α]
推导:
tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan2A]
扩展资料以下关系,函数名不变,符号看象限.
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
以下关系,奇变偶不变,符号看象限
sin(90°-α)=cosα
cos(90°-α)=sinα
tan(90°-α)=cotα
cot(90°-α)=tanα
sin(90°+α)=cosα
cos(90°+α)=-sinα
tan(90°+α)=-cotα
cot(90°+α)=-tanα
sin(270°-α)=-cosα
cos(270°-α)=-sinα
tan(270°-α)=cotα
cot(270°-α)=tanα
sin(270°+α)=-cosα
cos(270°+α)=sinα
tan(270°+α)=-cotα
cot(270°+α)=-tanα
参考资料:
附:三角函数值表
sin0=0,
sin15=(√6-√2)/4 ,
sin30=1/2,
sin45=√2/2,
sin60=√3/2,
sin75=(√6+√2)/2 ,
sin90=1,
sin105=√2/2(√3/2+1/2)
sin120=√3/2
sin135=√2/2
sin150=1/2
sin165=(√6-√2)/4
sin180=0
sin270=-1
sin360=0
sin1=0.01745240643728351 sin2=0.03489949670097 sin3=0.05233595624294383
sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
sin7=0.12186934340514747 sin8=0.137310096006544 sin9=0.15643446504023087
sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.207169081775931
sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074
sin16=0.275637355816996 sin17=0.2923717047227367 sin18=0.3090169943749474
sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027
sin22=0.3746065934152 sin23=0.3907311284892737 sin24=0.40673664307580015
sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675
sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994
sin31=0.51503807400542 sin32=0.52992642332049 sin33=0.544639035015027
sin34=0.55929034707468 sin35=0.573576436351046 sin36=0.5877852522924731
sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.62932030498375
sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.66306063588582
sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475
sin46=0.7193398003386511 sin47=0.73135370161705 sin48=0.7431448254773941
sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708
sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474
sin55=0.815204428898 sin56=0.8290375725550417 sin57=0.8386705679454239
sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386
sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.80065241883678
sin64=0.8987940462967 sin65=0.9063077870366499 sin66=0.35454576426009
sin67=0.9205048534524404 sin68=
如有疑问,请追问;如已解决,请采纳
完整的三角函数值表在哪看?
如下图。
sin cos tan相关方程式
1、数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
2、商的关系
tanα=sinα/cosα
cotα=cosα/sinα
3、平方关系
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
4、积化合公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
扩展资料:
1、数形结合的思想
把抽象的数和直观的形双向联系与沟通,使抽象思想与形象思维有机地结合起来化抽象为形象,另外,有关三角函数的相位变换,周期变换亦是如此,只要弄懂它的原理就可以了。
2、最值问
利用正余弦函数的有界性来求,还可以利用配方法,将其转化为二次函数来求;还可以利用函数在区间内的单调性;配合使用一些基本不等式。
三角函数值公式表
三角函数值公式表如下:
积化和公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)];cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)];cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)];sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]。
和化积公式:sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2];cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]。
两角和与的三角函数关系:sin(α+β)=sinαcosβ+cosαsinβ;sin(α-β)=sinαcosβ-cosαsinβ;cos(α+β)=cosαcosβ-sinαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ);tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)。
常见三角函数值表是什么?
常见三角函数值指的是常见角度数的三角函数值,表格如下:
扩展资料:
三角函数表发展到今天,经历了许多变迁。
最初,三角函数的概念是探索天文现象发现的,三角函数的周期性变化可以在一定程度上从数学的角度,解释天文现象的周期性变化。
三角函数表的最早形态,可以追溯到古希腊天文学家托勒密的著作《天文学大成》中记录的“弦表”。
托勒密在制作这张弦表时使用的是半径为60单位的圆的圆心角,并且记录了弦长,因此,正弦函数值的变化也是在圆半径不变的基础上,随着弦长的变化而变化。也就是说,这张弦表也可以视为最早的正弦表。
至此,三角函数值多为弦值,直到中亚细亚天文学家阿尔·巴坦尼通过将一根杆直立在地上/墙上通过阴影测量太阳仰角的时候,得出了余切值与正切值。杆立在地上时,阳光在地上投射的影子长度即余切值;杆水平插在墙上时,阳光投射杆在墙面上的影子长度即正切值。
后来,14世纪英国三角学者布拉瓦丁正式将切值引入到了三角计算中去。直到天文学家的学生利提克斯认为当时天文观测的精度需要越来越高,对三角函数值的计算也越来越迫切,便开始着手于包括正弦、正切和正割的三角函数表的制作。直到1956年由他的学生完成并公诸于世。
现在,随着计算机的出现,三角函数值的计算也愈加精密、愈加方便,三角函数表便慢慢消失在我们的视野中了。
参考资料来源:
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。