您好,今天小爱来为大家解答以上的问题。高中数学log的公式大全相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M)(n∈R)(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)(5)换底公式:log(A)M=log(b)M/log(b)A(b>0且b≠1)(6)a^(log(b)n)=n^(log(b)a)证明:设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)(7)对数恒等式:a^log(a)N=N;log(a)a^b=b(8)由幂的对数的运算性质可得(推导公式)1.log(a)M^(1/n)=(1/n)log(a)M,log(a)M^(-1/n)=(-1/n)log(a)M2.log(a)M^(m/n)=(m/n)log(a)M,log(a)M^(-m/n)=(-m/n)log(a)M3.log(a^n)M^n=log(a)M,log(a^n)M^m=(m/n)log(a)M4.log(以n次根号下的a为底)(以n次根号下的M为真数)=log(a)M,log(以n次根号下的a为底)(以m次根号下的M为真数)=(n/m)log(a)M5.log(a)b×log(b)c×log(c)a=1对数与指数之间的关系当a>0且a≠1时,a^x=Nx=㏒(a)N。

本文到这结束,希望上面文章对大家有所帮助。