垂径定理及其推论是什么?

一、垂径定理及其推论

垂直于弦的直径集体备课记录 垂直于弦的直径说课视频垂直于弦的直径集体备课记录 垂直于弦的直径说课视频


垂直于弦的直径集体备课记录 垂直于弦的直径说课视频


垂直于弦的直径集体备课记录 垂直于弦的直径说课视频


垂直于弦的直径集体备课记录 垂直于弦的直径说课视频


垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

(1)定理中的直径过圆心即可,可以是直径、半径、过圆心的直线或线段;

(2)此定理是证明等线段、等角、垂直的主要依据,同时也为圆的有关计算提供了方法和依据。

二、垂径定理的推论:

(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧

推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧

推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧

推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧

推论四:在同圆或者等圆中,两条平行弦所夹的弧相等

(证明时的理论依据就是上面的五条定理)

但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:

一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论

1.平分弦所对的优弧

2.平分弦所对的劣弧

(前两条合起来就是:平分弦所对的两条弧)

3.平分弦 (不是直径)

4.垂直于弦

5.经过圆心

圆的垂径定理

圆的垂径定理是数学几何(圆)中的一个定理,指垂直于弦的直径平分弦且平分这条弦所对的两条弧。

定理定义:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论。称为知二得三(知二推三)。

1、平分弦所对的优弧

2、平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)

3、平分弦(不是直径)

4、垂直于弦

5、过圆心(或直径)

定理简史:欧几里得(古希腊数学家 ,公元前330年~公元前275年,)几何原本第1卷中的第12个命题实际即为垂径定理,这可能是早的有关于垂径定理的记载。

垂径定理十个推论及证明

垂径定理及其推论: 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.注意:(1)垂径定理及其推论是证明线段相等、弧相等、角相等的重要依据.在圆中解有关弦的问题时,经常做垂直于弦的直径作为辅助线.(2)垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.这样理解与记忆垂径定理,理解深刻,记忆准确,有利于应用.定义:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。 推论一:平分弦(不是直径),的直径垂直于这条弦,并且平分这条弦所对的两段弧 推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 推论四:在同圆或者等圆中,两条平行弦所夹的弧相等 (证明时的理论依据就是上面的五条定理) 编辑本段证明 如图 ,在⊙O中,DC为直径, AB是弦,AB⊥DC,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD 垂径定理证明图连OA、OB ∵OA、OB是半径 ∴OA=OB ∴△OAB是等腰三角形 ∵AB⊥DC ∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一) ∴弧AD=弧BD,∠AOC=∠BOC ∴弧AC=弧BC 编辑本段讲解 垂径定理又称“5-2-3”定理 其意为:①CD是⊙O直径AB是弦;②CD⊥AB;③AE=BE;④弧AD=弧BD;⑤弧AC=弧BC 在以上5个条件中满足任意2个则另外三个条件也成立. 以下是推论 编辑本段推论 推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧 推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 推论四:在同圆或者等圆中,两条平行弦所夹的弧相等 (证明时的理论依据就是上面的五条定理) 但是在做不需要写证明过程的题目中,可以用下面的方法进行判断: 一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论 1.平分弦所对的优弧 2.平分弦所对的劣弧 (前两条合起来就是:平分弦所对的两条弧) 3.平分弦 (不是直径) 4.垂直于弦 5.经过圆心 6.垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

《垂直于弦的直径》的课程教学设计

课时 (一)

教学目标 :

(1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;

(2)进一步培养学生观察问题、分析问题和解决问题的能力;

(3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱。

教学重点、难点:

重点:

①垂径定理及应用;

②从感性到理性的学习能力。

难点:垂径定理的证明。

教学学习活动设计:

(一)实验活动,提出问题:

1、实验:让学生用自己的方法探究圆的对称性,教师学生努力发现:圆具有轴对称、中心对称、旋转不变性。

2、提出问题:老师学生观察、分析、发现和提出问题。

通过演示实验观察感性理性引出垂径定理。

(二)垂径定理及证明:

已知:在⊙O中,CD是直径,AB是弦,CDAB,垂足为E。

求证:AE=EB, =, =。

证明:连结OA、OB,则OA=OB。又∵CDAB,直线CD是等腰△OAB的对称轴,又是⊙O的对称轴。所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合, 、 分别和 、 重合。因此,AE=BE, =, =。从而得到圆的一条重要性质。

垂径定理:平分这条弦,并且平分弦所对的两条弧。

组织学生剖析垂径定理的条件和结论:

CD为⊙O的直径,CDAB AE=EB,

为了运用的方便,不易出现错误,将原定理叙述为:

①过圆心;

②垂直于弦;

③平分弦;

④平分弦所对的优弧;

⑤平分弦所对的劣弧。

加深对定理的理解,突出重点,分散难点,避免学生记混。

(三)应用和训 练

例1、已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。

分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OEAB于E,而AE=EB= AB=4cm。此时解Rt△AOE即可。

解:连结OA,作OEAB于E。

则AE=EB。

∵AB=8cm,AE=4cm。

又∵OE=3cm,

在Rt△AOE中,

(cm)。

⊙O的半径为5 cm。

说明:①学生完成,老师指导解题步骤;②应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h

关系:r =h+d; r2 =d2 + (a/2)2

例2、 已知:在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点。求证AC=BD。(证明略)

说明:此题为基础题目,对各个层次的学生都要求完成。

练习1:教材P78中练习1,2两道题。由学生分析思路,学生之间展开评价、交流。

指导学生归纳:①构造垂径定理的基本图形,垂径定理和勾股定理的结合是计算弦长、半径、弦心距等问题的常用方法;②在圆中解决弦的有关问题经常作的辅助线弦心距。

(四)小节与反思

教师组织学生进行:

知识:

(1)圆的`轴对称性;

(2)垂径定理及应用。

方法:

(1)垂径定理和勾股定理有机结合计算弦长、半径、弦心距等问题的方法,构造直角三角形;

(2)在因中解决与弦有关问题经常作的辅助线弦心距;

(3)为了更好理解垂径定理,一条直线只要满足

①过圆心;

②垂直于弦;则可得

③平分弦;

④平分弦所对的优弧;

⑤平分弦所对的劣弧。

(五)作业

教材P84中11、12、13。

第二课时 (二)

教学目标 :

(1)使学生掌握垂径定理的两个推论及其简单的应用;

(2)通过对推论的探讨,逐步培养学生观察、比较、分析、发现问题,概括问题的能力。促进学生创造思维水平的发展和提高

(3)渗透一般到特殊,特殊到一般的辩证关系。

教学重点、难点:

重点:

①垂径定理的两个推论;

②对推论的探究方法。

难点:垂径定理的推论1。

学习活动设计 :

(一)分解定理(对定理的剖析)

1、复习提问:定理:平分这条弦,并且平分弦所对应的两条弧。

2、剖析:

(教师指导)

(二)新组合,发现新问题: (A层学生自己组合,小组交流,B层学生老师)

(包括原定理,一共有10种)

(三)探究新问题,归纳新结论:

(1)平分弦(不是直径)的直径垂直于弦,并且平分弦对应的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦对应的两条弧。

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

(4)圆的两条平行线所夹的弧相等。

(四)巩固练习:

练习1、平分弦的直径垂直于弦,并且平分弦所对的两条弧这句话对吗?为什么?

(在推论1(1)中,为什么要附加不是直径这一条件。)

练习2、填空:在⊙O中,

(1)若MNAB,MN为直径,则________,________,________;

(2)若AC=BC,MN为直径,AB不是直径,则则________,________,________;

(3)若MNAB,AC=BC,则________,________,________;

(4)若 =,MN为直径,则________,________,________。

(此题目的:巩固定理和推论)

(五)应用、反思

例、四等分 。

(A层学生自主完成,对于其他层次的学生在老师指导下完成)

教材P80中的第3题图,是典型的错误作。

此题目的:是学生应用定理及推论来平分弧的方法,通过学生自主作培养学生的动手能力;通过与教材P80中的第3题图的对比,加深学生对感性知识的认识及理性知识的理解。培养学生的思维能力。

(六)小结:

知识:垂径定理的两个推论。

能力:

①推论的研究方法;

②平分弧的作图。

(七)作业 :

第三课时

垂径定理及推论在解题中的应用

教学目的:

⑴要求学生掌握垂径定理及其推论,会解决有关的证明,计算问题。

⑵培养学生严谨的逻辑推理能力;提高学生方程思想、分类讨论思想的应用意识。

⑶通过例4(赵州桥)对学生进行爱国主义的教育;并向学生渗透数学来源于实践,又反过来服务于实践的辩证唯物主义思想

教学重点: 垂径定理及其推论在解题中的应用

教学难点 : 如何进行辅助线的添加

教学内容:

(一)复习

1垂径定理及其

推论1:对于一条直线和一个圆来说,具备下列五个条件中的任何个,那么也具有其他三个:

⑴ 直线过圆心 ;

⑵ 垂直于弦 ;

⑶ 平分弦 ;

⑷ 平分弦所对的优弧 ;

⑸ 平分弦所对的劣弧。可简记为:知2推3

推论2:圆的两条平行弦所夹的弧相等。

2应用垂径定理及其推论计算(这里不管什么层次的学生都要自主研究)

涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h关系:r =h+d ; r2 =d2 + (a/2)2

3常添加的辅助线:(学生归纳)

⑴ 作弦心距 ;

⑵ 作半径 。——————构造直角三角形

4可用于证明:线段相等、弧相等、角相等、垂直关系;同时为圆中的计算、作图提供依据。

(二)应用例题:(让学生分析,交流,解答,老师学生归纳)

例1、1300多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧中点到弦的距离,也叫弓形的高)为7.2米,求桥拱的半径(到0.1米)。

说明:

①对学生进行爱国主义的教育;

②应用题的解题思路:实际问题(转化,构造直角三角形)数学问题。

例2、已知:⊙O的半径为5 ,弦AB∥CD ,AB =6 ,CD =8 。求:AB与CD间的距离。(让学生画图)

解:分两种情况:

(1)当弦AB、CD在圆心O的两侧

过点O作EFAB于E,连结OA、OC,

又∵AB∥CD,EFCD。(作辅助线是难点,学生往往作OEAB,OFAB,就得EF=OE+OF,错误的结论)

由EF过圆心O,EFAB,AB =6,得AE=3,

在Rt△OEA中,由勾股定理,得

同理可得:OF=3

EF=OE+OF=4+3=7。

(2)当弦AB、CD在圆心O的同侧

同(1)的方法可得:OE=4,OF=3。

说明:①此题主要是渗透分类思想,培养学生的严密性思维和解题方法:确定图形分析图形数形结合解决问题;②培养学生作辅助线的方法和能力。

例3、 已知:AB是⊙O的弦,半径OC∥AB ,AB=24 ,OC =15 。求:BC的长。

解:(略,过O作OEAE于E ,过B作BFOC于F ,连结OB。BC =)

说明:通过添加辅助线,构造直角三角形,并把已知与所求线段之间找到关系。

(三)应用训练:

P8l中1题。

在直径为650mm的圆柱形油槽内装入一些油后。截面如图所示,若油面宽AB=600mm,求油的深度。

学生分析,教师适当点拨。

分析:要求油的深度,就是求有油弓形的高,弓形的高是半径与圆心O到弦的距离,从而不难看出它与半径的一半可以构造直角三角形,然后利用垂径定理和勾股定理来解决。

(四)小结:

1 垂径定理及其推论的应用注意指明条件。

2 应用定理可以证明的问题;注重构造思想,方程思想、分类思想在解题中的应用。

(五)作业 : 教材P84中15、16题,P85中B组2、3题。

探究活动

直线MN与⊙O交于点A、B,CD是⊙O的直径,CEMN于E,DFMN于F,OHMN于H。

(1)线段AE、BF之间存在怎样的关系?线段CE、OH、DF之间满足怎样的数量关系?并说明理由。

(2)当直线CD的两个端点在MN两侧时,上述关系是否仍能成立?如果不成立,它们之间又有什么关系?并说明理由。

(提示:(1)AE=BF,CE+DF=2OH,(2)AE=BF仍然成立,CE+DF=2OH不能成立。CE、DF、OH之间应满足)

圆的垂径定理及其推论

垂径定理及其推论:定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径;垂直于弦,并且平分弦所对的两条弧;弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;在同圆或者等圆中,两条平行弦所夹的弧相等。

1、垂径定理及其推论是证明线段相等、弧相等、角相等的重要依据。在圆中解有关弦的问题时,经常做垂直于弦的直径作为辅助线。

2、垂径定理:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧。条件是直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧。

3、如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧 。垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

垂径定理十个推论及证明过程(知2证3)

垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧

推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧

推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧

推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧

推论四:在同圆或者等圆中,两条平行弦所夹的弧相等

(证明时的理论依据就是上面的五条定理)

但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:

在5个条件中:

1.平分弦所对的一条弧

2.平分弦所对的另一条弧

3.平分弦

4.垂直于弦

5.经过圆心(或者说直径)

只要具备任意两个条件,就可以推出其他的三个结论

什么是垂径定理?

垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧

推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧

推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧

推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧

推论四:在同圆或者等圆中,两条平行弦所夹的弧相等

(证明时的理论依据就是上面的五条定理)

但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:

在5个条件中:

1.平分弦所对的一条弧

2.平分弦所对的另一条弧

3.平分弦

4.垂直于弦

5.经过圆心(或者说直径)

只要具备任意两个条件,就可以推出其他的三个结论

初中数学 圆 垂直定理

1、圆是定点的距离等于定长的点的2、圆的内部可以看作是圆心的距离小于半径的点的3、圆的外部可以看作是圆心的距离大于半径的点的4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三点确定一个圆。10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理:一条弧所对的圆周角等于它所对的圆心角的一半17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论:2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径19、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理: 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的切线垂直于经过切点的半径24、推论1 经过圆心且垂直于切线的直线必经过切点25、推论2 经过切点且垂直于切线的直线必经过圆心26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理:弦切角等于它所夹的弧对的圆周角29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、如果两个圆相切,那么切点一定在连心线上35、①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r) ④两圆内切 d=R-r(R>r) ⑤两圆内含 d<R-r(R>r) 36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38、定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39、正n边形的每个内角都等于(n-2)×180°/n 40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41、正n边形的面积Sn=pnrn/2 p表示正n边形的周长42、正三角形面积√3a/4 a表示边长43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k (n-2)180°/n=360°化为(n-2)(k-2)=4 44、弧长计算公式:L=n兀R/180 45、扇形面积公式:S扇形=n兀R^2/360=LR/2 46、内公切线长= d-(R-r) 外公切线长= d-(R+r)