霍尔传感器原理

霍尔式传感器,利用半导体材料的霍尔效应进行刻星的一种磁敏式传感器。它可以直接测随磁场和做位移量,应用于电池测量、压力、加速度、振动等方面的测量领域。目前霍尔传感器已从分立元件发展到集成电路的阶段,正越来越受人们的重视,应用日益广泛。

霍尔传感器结构 霍尔传感器结构图解霍尔传感器结构 霍尔传感器结构图解


霍尔传感器结构 霍尔传感器结构图解


霍尔传感器结构 霍尔传感器结构图解


一、电流与电压

电荷可以激发电场,并对置于电场中的其他电荷产生电场力的作用,类似于地球周围的重力场可以对人产生重力作用。电荷量越大,电场越强,相同距离间的电场力作用就越明显,这个作用就是电压。

也就是说,电压越大,表明电场越强,对电荷的作用力就越大。又因为,导体中存在大量自由电子(负电荷),所以,若给导体施加电压,就相当于在导体内部施加了个强电场,在这个强电场的作用力下,导体内部的自由电子因受到力的作用发生定向移动,这就是电流。且电压越大,电场越强,受到电场力发生移动的电荷(自由电子)就越多,电流就越大。换言之,电流一方面表明了电荷的定向移动,一方面又表示了移动的电荷量(单位时间通过导体截面的电荷量)。

另外,电场方向为电压正极指向电压负极,或者说,电场方向为正电荷指向负电荷。由于电荷之间同性相斥,异性相吸,若正电荷处于电场中,就会受到电场力从电压正极跑向负极,这个跑向就是电流正方向,所以把电流从电压正极流向负极的这种方向关系称为关联参考方向。

二、洛伦兹力

洛伦兹力属于电磁力的一种。电磁力包括宏观上的安培力以及微观上的洛伦兹力。所谓电磁力,是指通电导体或运动电荷处于磁场中时,会受到磁场的作用力。因为通电导体本质是其内部电荷的定向移动,大量运动电荷,每个运动电荷都受到洛伦兹力的作用,在宏观上就表现为导体所受到的安培力(各个洛伦兹力的合力)。

洛伦兹力的方向判断用左手定则,磁力线从掌心穿过,四指指向正电荷的运动方向(即电流正方向),拇指指向即为洛伦兹力方向,在这个力的作用下,正电荷的运动将发生偏转。

若运动电荷带负电,四指指向将相反(因为负电荷的运动方向与电流正方向相反),根据左手定则,可以发现,同一磁场中,正、负电荷所受到的洛伦兹力方向相反。毫无疑问,磁场越强,运动电荷所受到的洛伦兹力就越大。

三、霍尔效应

霍尔效应由物理学家霍尔发现,简单来说就是给半导体通电并将其置于磁场中,该半导体将会产生另一个电压。给一半导体通电,将有电流流过,电流由自由电子定向移动形成。

将磁体靠近通电的半导体,此时半导体处于磁场中。显然,半导体中定向移动的自由电子就会受到洛伦兹力的作用发生偏转。根据左手定则,磁力线从上往下穿过半导体,电子运动方向为四指反方向,则拇指为电子偏转方向。

另外,在半导体中,电荷除了自由电子外,还有失去电子的空穴(或者说离子,带正电),带有等量异性电荷,分别处于半导体两侧。由于异性电荷分别聚集在半导体两侧,这就会在半导体内部形成内电场,即正负电荷之间的空间存在电场。

电场的建立,相当于有了电压的存在,此时用电压表测半导体两侧,必然会有具体电压值,这个电压被称为霍尔电压或霍尔电势。

结合上文所言的洛伦兹力,磁场越强,所能束缚的运动电荷就越多,那么半导体两侧聚集的异性电荷就越多,所建立的内电场就越强,即两侧的电压越大。

霍尔传感器的工作原理是什么?

工作原理:

霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。

磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位,这就是所谓的霍尔电压。

扩展资料:

霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。

霍尔传感器按被检测对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测受检对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,这个磁场是被检测的信息的载体,通过它,将许多非电、非磁的物理量转变成电学量来进行检测和控制。

参考资料:

霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。

霍尔效应:长宽厚分别为L,b,d的半导体薄皮,当被置于磁感应强度为B的磁场时,如果在其相对的两边通以控制电流I,且磁场方向与电流方向正交,则在半导体的另外两边将产生一个大小与控制电流I和磁感应强度B乘积成正比的电势Uh,这种现象称为霍尔效应。

工作原理:当N型半导体霍尔元件通以电流I时,其中的自由电荷即载流子受到洛伦兹力作用,,使电子向垂直于B和自由电子运动方向偏转,方向符合右手螺旋定则,即在不同表面出现电荷的积聚。由于电荷积聚产生静电场,即为霍尔电场,该电场对电子的作用力与洛伦兹力方向相反,阻止电子继续偏转,两者逐渐达到动态平衡。产生稳定的霍尔电势输出。

一、霍尔传感器原理- -霍尔效应

霍尔效应的电路示意图如下图所示,霍尔效应指的是:若在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的均匀磁场,则在电流I和磁场B的垂直方向上将会产生电势UH,UH=kIB/d,其中k指的是霍尔系数,与半导体的大小及材料等因素有关,d指的是半导体薄片的厚度,我们将产生的电势UH称为霍尔电压,将这种现象称之为霍尔效应。

二、霍尔传感器原理- -霍尔元件

随着霍尔效应的发现,人们逐步将半导体材料制成的元件称为霍尔元件,由于霍尔元件结构简单、敏感度高、频响范围宽、输出电压变化大、体积小、寿命长等诸多优点,在检测测量、自动化装置、计算机及信息技术等各领域中都有着广泛的应用。

三、霍尔传感器原理- -霍尔传感器

霍尔传感器是利用霍尔效应、使用霍尔元件制作出的一种磁场传感器,该传感器除霍尔元件外,一般还包括放大器电路、温度补偿电路、稳压电源电路等电路模块,现已广泛用于半导体材料的导电类型、载流子浓度、载流子迁移率等参数的检测。

四、霍尔传感器原理- -应用

以上对于霍尔效应、霍尔元件、霍尔传感器的讲解都较为抽象,下面我们结合现实生活来对霍尔传感器的应用进行说明。现在部分小伙伴使用的是一个叫做“小米”的手机,相信广大网友即使没用过也听说过吧,就在小米4的发布会上,还同时发布了一个智能翻盖保护套。这款保护套的特殊之处就是当你闭合保护套时,小米4自动进入休眠状态;而当你翻开保护套时,小米4自动进入使用状态,无需点任何按钮就可完成手机的唤醒——回归正题,此处手机对于保护套闭合或者翻开的感应就是通过霍尔传感器来完成的(此处有掌声。。。)。

霍尔传感器的工作原理:

1.磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位,这就是所谓的霍尔电压。

2.霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。

3.若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。

霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。

磁性开关又叫做磁控开关,或叫磁感应开关,就是用一个磁铁,通过磁铁距离开关的远近,来控制开关接通与断开。通常是靠近,开关接通,磁铁离去,开关断开。

而市面上较为常见的是霍尔磁性开关,霍尔磁性开关是一种利用霍尔效应的磁感应式电子开关,属于有源磁电转换器件。霍尔开关的工作原理主要是永磁体产生磁性,加上线圈电流一起配合使用。产生磁场,霍尔利用感应磁通量的大小来实现开关功能!霍尔开关的使用和干簧管功能和工作方式是一致的!只是霍尔开关是无接触的,干簧管有接触的!

霍尔开关的输入端是以磁感应强度B 来表征的,当B 值达到一定的程度(如B1)时,开关内部集成的触发器翻转,其输出电平状态也随之翻转。输出端一般采用晶体管输出,有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。

霍尔开关用途及优点:耐高温、无触点、无接触、底功耗、响应频率高、使用寿命长等特点,主要用于:压力开关、行程开关、无刷电机【深圳艾尔磁电】

霍尔传感器的工作原理简单说就是霍尔元件的磁电感应效应。霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

你好,希望以下回答对你有所帮助

霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。

磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位,这就是所谓的霍尔电压。

简述霍尔式转速传感器的工作原理

固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势即霍尔电压。

正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。大量的研究揭示:参加材料导电过程的不带负电的电子,还有带正电的空穴。

扩展资料

霍尔元件测量误及补偿:

霍尔元件在使用中,存在多种因素影响测量精度,主要原因有两类:半导体制造工艺和半导体固有特性。其表现为零位误和温度而引起的测量误。

霍尔式转速传感器有几种不同的结构。磁性转盘的输入轴与被 测转轴相连,当被测转轴转动时,磁性转盘随之转动,固定在磁性转盘附近的霍尔传感器便可在每一个小磁铁通过时产生一个相应的脉冲,检测出现单位时间的脉冲数,便可知被测转速。

参考资料来源:

工作原理:

1、使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。

2、因为霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,要有外加电源才能工作,这一特点能检测转速低的运转情况。

一分钟了解霍尔效应原理霍尔传感器工作原理图是什么

霍尔式ABS轮速传感器的结构组成与其工作原理是什么?

霍尔

式abs

轮速传感器

的结构组成,有

齿圈

,传感头,

永磁铁

1,

霍尔元件

2和

电子电路

等组成。

它的工作原理

就是利用

磁力线

密度的变化,产生出霍尔

感应电压

,然后将霍尔感应电压整形放大成

脉冲电压

,通过

脉冲频率

来判断轮速传感器的转速。希望对您有用。

霍尔传感器的工作原理是什么?

霍尔传感器是根据霍尔效应制作的一种磁场传感器,它是电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,我们公司的磁铁是在宁波尼兰德磁业公司购买的

霍尔传感器是由霍尔开关集成传感器和磁性转盘组成,霍尔式转速传感器的各种不同结构如图 1-48 所示。将磁性转盘的输入轴与被测转轴相连,当被测转轴转动时,磁性转盘便随之转动,固定在磁性转盘附近的霍尔开关集成传感器便可在每一个小磁铁通过时产生一个相应的脉冲,检测出单位时间的脉冲数,便可知道被测对象的转速。磁性转盘上的小磁铁数目的多少,将决定传感器的分辨率。