初一100道一元一次方程计算题

2(x-2)-3(4x-1)=9(1-x)

七年级下册一元一次方程50道题_七年级下册一元一次方程计算题七年级下册一元一次方程50道题_七年级下册一元一次方程计算题


七年级下册一元一次方程50道题_七年级下册一元一次方程计算题


11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

2(x-2)+2=x+1

5x^2+3x+1=0

7x^2+x+12=0

2x^2+4x+4=0

8x^2+3x+1=0

5x^2+3x+2=0

45x^2+3x+100=0

89x^2+335x+1=0

x+1=3

2x+3=5

3x+5=8

4x+8=12

5x-6=9

2x-x=1

x+3=0

5x+3x=8

3x+1=2x

x-7=6x+2

5x+1=9

9x+8=24

55x+54=-1

23+58x=99

29x-66=21

0.4(x-0.2)+1.5=0.7x-0.38

x=6

30x-10(10-x)=100

x=5

4(x+2)=5(x-2)

x=18

120-4(x+5)=25

x=18.75

15x+863-65x=54

x=16.18

3(x-2)+1=x-(2x-1)

x=3/2

11x+64-2x=100-9x

x=2

x/3 -5 = (5-x)/2

2(x+1) /3=5(x+1) /6 -1

(1/5)x +1 =(2x+1)/4

(5-2)/2 - (4+x)/3 =1

x/3 -1 = (1-x)/2

(x-2)/2 - (3x-2)/4 =-1

都是麓山的同学。。要选我来!

3x(-9)+7x(-9)

(-54)x1/6x(-1/3)x/3 -5 = (5-x)/2

2(x+1) /3=5(x+1) /6 -1

(1/5)x +1 =(2x+1)/4

(5-2)/2 - (4+x)/3 =1

x/3 -1 = (1-x)/2

(x-2)/2 - (3x-2)/4 =-1

(5y+1)+(1-y)=(9y+1)+(1-3y)

7(2x-1)-3(4x-1)=4(3x+2)-1

10x=11 x=-1.1

2x+5=45

2(x+8)=48

88-25x=45+6x

566+48x=56-x

2(x-2)-3(4x-1)=9(1-x)

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3x2+27=0

3x2-4x-4=0.

(2y+1)2+3(2y+1)+2=0.

(x-2)2-3=0

2x^2-5x+1=0

x(8+x)=16

(2x-3)^2-2(2x-3)-3=0

x^2-17x+66=0

(x+1)^2-2(x-1)^2=6x-5 4

(x+2)^2=9(2x-1)^2

初一50道一元一次不等式应用题50道一元一次方程应用题及

1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?

设慢车开出a小时后与快车相遇

50a+75(a-1)=275

50a+75a-75=275

125a=350

a=2.8小时

2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离.

设原定时间为a小时

45分钟=3/4小时

根据题意

40a=40×3+(40-10)×(a-3+3/4)

40a=120+30a-67.5

10a=52.5

a=5.25=5又1/4小时=21/4小时

所以甲乙距离40×21/4=210千米

3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?

设乙队原来有a人,甲队有2a人

那么根据题意

2a-16=1/2×(a+16)-3

4a-32=a+16-6

3a=42

a=14

那么乙队原来有14人,甲队原来有14×2=28人

现在乙队有14+16=30人,甲队有28-16=12人

4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份 的月增长率.

设四月份的利润为x

则x(1+10%)=13.2

所以x=12

设3月份的增长率为y

则10(1+y)=x

y=0.2=20%

所以3月份的增长率为20%

5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排.如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍.求有多少人?

设有a间,总人数7a+6人

7a+6=8(a-5-1)+4

7a+6=8a-44

a=50

有人=7×50+6=356人

6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?

按比例解决

设可以炸a千克花生油

1:0.56=280:a

a=280×0.56=156.8千克

完整算式:280÷1×0.56=156.8千克

7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?

设总的书有a本

一班人数=a/10

二班人数=a/15

那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本

8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.这个小队有多少人?一共有多少棵树苗?

设有a人

5a+14=7a-6

2a=20

a=10

一共有10人

有树苗5×10+14=64棵

9、一桶油连油带筒重50kg,次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?

设油重a千克

那么桶重50-a千克

次倒出1/2a-4千克,还剩下1/2a+4千克

第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油

根据题意

1/8a-5/3+50-a=1/3

48=7/8a

a=384/7千克

原来有油384/7千克

10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服合适?(1班42人,2班43人,3班45人)

设96米为a个人做

根据题意

96:a=33:15

33a=96×15

a≈43.6

所以为2班做合适,有富余,但是富余不多,为3班做就不够了

11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数.

设原分数分子加上123,分母减去163后为3a/4a

根据题意

(3a-123+73)/(4a+163+37)=1/2

6a-100=4a+200

2a=300

a=150

那么原分数=(3×150-123)/(4×150+163)=327/763

12、水果店运进一批水果,天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)

设水果原来有a千克

60+60/(2/3)=1/4a

60+90=1/4a

1/4a=150

a=600千克

水果原来有600千克

13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)

设原来有a吨

a×(1-3/5)+20=1/2a

0.4a+20=0.5a

0.1a=20

a=200

原来有200吨

14、王大叔用48米长的篱笆靠墙围一块长方形菜地.这个长方形的长和宽的比是5:2.这块菜地的面积是多少?

设长可宽分别为5a米,2a米

根据题意

5a+2a×2=48(此时用墙作为宽)

9a=48

a=16/3

长=80/3米

宽=32/3米

面积=80/3×16/3=1280/9平方米

或5a×2+2a=48

12a=48

a=4

长=20米

宽=8米

面积=20×8=160平方米

15、某市移动电话有以下两种计费方法:

种:每月付22元月租费,然后美分钟收取通话费0.2元.

第二种:不收月租费 每分钟收取通话费0.4元.

如果每月通话80分钟 哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢?

设每月通话a分钟

当两种收费相同时

22+0.2a=0.4a

0.2a=22

a=110

所以就是说当通话110分钟时二者收费一样

通话80分钟时,用第二种22+0.2×80=38>0.4×80=32

通过300分钟时,用种22+0.2×300=82

七年级一元一次方程计算题题目注意是"方程的计算题" 请帮帮忙 50道?

一、判断题:

(1)判断下列方程是否是一元一次方程:

①-3x-6x2=7;( ) ② ( )

③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( )

(2)判断下列方程的解法是否正确:

①解方程3y-4=y+3

3y-y=3+4,2y=7,y= ;( )

②解方程:0.4x-3=0.1x+2

0.4x+...,2,某商场投入一笔资金采购商品,经过市场调查发现,如果月初销售,可获利15%,并可以用本和利投资其他商品,到月末又可获利10%,如果月末出售可获利30%,但要付出仓储费700园,请根据上场的资金情况,如何购销获利多?,1,

初中100道一元一次方程题

1.x+2=3

x=1

2.x+32=33

x=1

3.x+6=18

x=12

4.4+x=47

x=43

5.19-x=8

x=11

6.98-x=13

x=85

7.66-x=10

x=56

8.5x=10

x=2

9.3x=27

x=9

10.7x=7

x=1

11.8x=8

x=1

12.9x=9

x=1

13.10x=100

x=10

14.66x=660

x=10

15.7x=49

x=7

16.2x=4

x=2

17.3x=9

x=3

18.4x=16

x=4

19.5x=25

x=5

20.6x=36

x=6

21.8x=64

x=8

22.9x=81

x=9

23.10x=100

x=10

24.11x=121

x=11

25.12x=144

x=12

26.13x=169

x=13

27.14x=196

x=14

28.15x=225

x=15

29.16x=256

x=16

30.17x=289

x=17

1:

4x+2=x+7

3x=5

x=5/3

2:

3-6x-4=2/3

-6x=5/3

x=-5/18

3:

(4x+2)/6-(5x-1)/6

-x+3=6x=-3

4:

4x/(2x+6)+1=7/(2x+6)

7-4x=2x+6

x=1/6

0.4(x-0.2)+1.5=0.7x-0.38

x=6

30x-10(10-x)=100

x=5

4(x+2)=5(x-2)

x=18

120-4(x+5)=25

x=18.75

15x+863-65x=54

x=16.18

3(x-2)+1=x-(2x-1)

x=3/2

11x+64-2x=100-9x

x=2

3X+18=52

x=34/3

4Y+11=22

y=11/4

3X9=5

x=5/27

8Z/6=48

z=36

3X+7=59

x=52/3

4Y-69=81

y=75/4

8X6=5

x=5/48

7Z/9=4

y=63/7

15X+8-5X=54

x=4.6

5Y5=27

y=27/40

8x+2=10

x=1

x8=88

x=11

y-90=1

y=

2x-98=2

x=50

6x6=12

x=1/3

5-6=5x

x=-1/5

6x=42

x=7

55-y=33

y=22

113x=60

x=20/11

3X+5X=48

X=6

14X-8X=12

X=2

65+2X=44

X=7

20X-50=50

X=5

28+6X=88

X=10

32-22X=10

X=1

24-3X=3

X=7

10X(5+1)=60

X=1

99X=100-X

X=1

X+3=18

X=15

X-6=12

X=18

56-2X=20

X=18

4y+2=6

Y=1

x+32=76

Y=44

3x+6=18

Y=4

16+8x=40

Y=4

2x-8=8

Y=8

4x-39=29

X=0.5

8x-3x=105

Y=21

x-65=42

Y=72

x+5=7

X=2

2x+3=10

X=3.5

12x-9x=9

X=3

6x+18=48

X=5

56x-50x=30

X=5

5x=15

X=3

78-5x=28

X=4

32y-29=3

X=1

5x+5=15

X=2

89x-9=80

X=1

100-20x=20

X=4

55x-25x=60

X=2

76y-75=1

Y=1

23y-23=23

Y=2

4x-20=0

X=5

80y+20=100

U=1

53x-90=16

X=2

2x+9x=11

X=1

12y-12=24

Y=3

80+5x=100

X=4

7x-8=6

X=2

65x+35=100

X=1

19y+y=40

Y=2

25-5x=15

X=2

79y+y=80

Y=1

42x+28x=140

X=2

3x-1=8

X=3

90y-90=90

Y=2

80y-90=70

Y=2

8y+2y=160

Y=16

88-x=80

X=8

9-4x=1

X=2

20x=40

X=2

65y-30=100

X=2

51y-y=100

Y=2

85y-1=-86

Y=-1

45x-50=40

X=2

0.4(x-0.2)+1.5=0.7x-0.38

x=6

30x-10(10-x)=100

x=5

4(x+2)=5(x-2)

x=18

120-4(x+5)=25

x=18.75

15x+863-65x=54

x=16.18

3(x-2)+1=x-(2x-1)

x=3/2

11x+64-2x=100-9x

x=2

1.7(2x-1)-3(4x-1)=4(3x+2)-1

2.(5y+1)+ (1-y)= (9y+1)+ (1-3y)

3.[ (- 2)-4 ]=x+2

4.20%+(1-20%)(320-x)=320×40%

5.2(x-2)+2=x+1

6.2(x-2)-3(4x-1)=9(1-x)

7.11x+64-2x=100-9x

8.15-(8-5x)=7x+(4-3x)

9.3(x-7)-2[9-4(2-x)]=22

10.3/2[2/3(1/4x-1)-2]-x=2

11.5x+1-2x=3x-2

12.3y-4=2y+1

13.87X13=5

14.7Z/93=41

15.15X+863-65X=54

16.58Y55=27489

17.2(x+2)+4=9

18.2(x+4)=10

19.3(x-5)=18

20.4x+8=2(x-1)

21.3(x+3)=9+x

22.6(x/2+1)=12

23.9(x+6)=63

24.2+x=2(x-1/2)

25.8x+3(1-x)=-2

26.7+x-2(x-1)=1

27.x/3 -5 = (5-x)/2

28.2(x+1) /3=5(x+1) /6 -1

29.(1/5)x +1 =(2x+1)/4

30.(5-2)/2 - (4+x)/3 =1

来套综合题

一、填空题.(每小题3分,共24分)

1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.

2.若x=-1是方程2x-3a=7的解,则a=_______.

3.当x=______时,代数式 x-1和 的值互为相反数.

4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.

5.在方程4x+3y=1中,用x的代数式表示y,则y=________.

6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.

7.已知三个连续的偶数的和为60,则这三个数是________.

8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.

二、选择题.(每小题3分,共30分)

9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).

A.0 B.1 C.-2 D.-

10.方程│3x│=18的解的情况是( ).

A.有一个解是6 B.有两个解,是±6

C.无解 D.有无数个解

11.若方程2ax-3=5x+b无解,则a,b应满足( ).

A.a≠ ,b≠3 B.a= ,b=-3

C.a≠ ,b=-3 D.a= ,b≠-3

12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后次相遇,t等于( ).

A.10分 B.15分 C.20分 D.30分

14.某商场在统计今年季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).

A.增加10% B.减少10% C.不增也不减 D.减少1%

15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.

A.1 B.5 C.3 D.4

16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).

A.从甲组调12人去乙组 B.从乙组调4人去甲组

C.从乙组调12人去甲组

D.从甲组调12人去乙组,或从乙组调4人去甲组

17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.

A.3 B.4 C.5 D.6

18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )

A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)

19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张来填补空白,需要配多大尺寸的.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:

车站名 A B C D E F G H

各站至H站

里程数(米) 1500 1130 0 622 402 219 72 0

例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).

(1)求A站至F站的火车票价(结果到1元).

(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:

购票人数 1~50人 51~100人 100人以上

票 价 5元 4.5元 4元

某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.

(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?

(2)两班各有多少名学生?(提示:本题应分情况讨论)

:

一、1.3

2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)

3. (点拨:解方程 x-1=- ,得x= )

4. x+3x=2x-6 5.y= - x

6.525 (点拨:设标价为x元,则 =5%,解得x=525元)

7.18,20,22

8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]

二、9.D

10.B (点拨:用分类讨论法:

当x≥0时,3x=18,∴x=6

当x<0时,-3=18,∴x=-6

故本题应选B)

11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)

12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)

13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)

14.D

15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)

16.D 17.C

18.A (点拨:根据等式的性质2)

三、19.解:原方程变形为

200(2-3y)-4.5= -9.5

∴400-600y-4.5=1-100y-9.5

500y=404

∴y=

20.解:去分母,得

15(x-1)-8(3x+2)=2-30(x-1)

∴21x=63

∴x=3

21.解:设卡片的长度为x厘米,根据图意和题意,得

5x=3(x+10),解得x=15

所以需配正方形的边长为15-10=5(厘米)

答:需要配边长为5厘米的正方形.

22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故

100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171

解得x=3

答:原三位数是437.

23.解:(1)由已知可得 =0.12

A站至H站的实际里程数为1500-219=1281(千米)

所以A站至F站的火车票价为0.12×1281=153.72≈154(元)

(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66

解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.

24.解:(1)∵103>100

∴每张门票按4元收费的总票额为103×4=412(元)

可节省486-412=74(元)

(2)∵甲、乙两班共103人,甲班人数>乙班人数

∴甲班多于50人,乙班有两种情形:

①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得

5x+4.5(103-x)=486

解得x=45,∴103-45=58(人)

即甲班有58人,乙班有45人.

②若乙班超过50人,设乙班x人,则甲班有(103-x)人,

根据题意,得

4.5x+4.5(103-x)=486

∵此等式不成立,∴这种情况不存在.

故甲班为58人,乙班为45人.

看看吧,行不行

一元一次方程练习题

基本题型:

一、选择题:

1、下列各式中是一元一次方程的是( )

A. B.

C. D.

2、方程的解是( )

A. B. C. 1 D. -1

3、若关于的方程的解满足方程,则的值为( )

A. 10 B. 8 C. D.

4、下列根据等式的性质正确的是( )

A. 由,得 B. 由,得

C. 由,得 D. 由,得

5、解方程时,去分母后,正确结果是( )

A. B.

C. C.

6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )

A. 0.81a 元 B. 1.21a元 C. 元 D. 元

8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )

A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元

9、下列方程中,是一元一次方程的是( )

(A)(B)(C)(D)

10、方程的解是( )

(A) (B) (C) (D)

11、已知等式,则下列等式中不一定成立的是( )

(A) (B)

(C) (D)

12、方程的解是,则等于( )

(A) (B) (C) (D)

13、解方程,去分母,得( )

(A) (B)

(C) (D)

14、下列方程变形中,正确的是( )

(A)方程,移项,得

(B)方程,去括号,得

(C)方程,未知数系数化为1,得

(D)方程化成

15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.

(A)3年后; (B)3年前; (C)9年后; (D)不可能.

16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为,则列出的方程正确的是( )

(A) (B)

(C) (D)

17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本是元,那么种植草皮至少需用( )

(A)元; (B)元; (C)元; (D)元.

一年期 二年期 三年期

2.25 2.43 2.70

18、银行教育储蓄的年利率如右下表:

小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益,则小明的父母应该采用( )

(A)直接存一个3年期;

(B)先存一个1年期的,1年后将利息和自动转存一个2年期;

(C)先存一个1年期的,1年后将利息和自动转存两个1年期;

(D)先存一个2年期的,2年后将利息和自动转存一个1年期.

二. 填空题:

1、,则________.

2、已知,则__________.

3、关于的方程的解是3,则的值为________________.

4、现有一个三位数,其个位数为,十位上的数字为,百位数上的数字为,则这个三位数表示为__________________.

5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.

6、某数的3倍比它的一半大2,若设某数为,则列方程为____.

7、当___时,代数式与的值互为相反数.

8、在公式中,已知,则___.

日 一 二 三 四 五 六

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数

,请用一个等式表示之间的关系______________.

10、一根内径为3㎝的圆柱形长中装满了水,现把中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,中的水的高度下降了____㎝.

11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.

12、成渝全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).

13、我们小时候听过龟兔赛跑的故事,都知道乌龟战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.

14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的是____元

15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________.

三、解方程:

1、 2、

3、 4、

5、 6、

7、 8、

9、已知是方程的根,求代数式的值.

四、列方程解应用题:

1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?

2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?

3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的得分能为145分吗?请简要说明理由.

4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?

(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 设这栋教学大楼每间教室多有45名学生,问:建造的这3道门是否符合安全规定?为什么?

5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?

6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?

7、一家商店将某种商品按提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的是多少元?

8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?

较高要求:

1、已知,那么代数式的值。

2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).

(A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1%

3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?

4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成销售,每吨可获利润2000元.

方案一:尽可能多的制成,其余直接销售鲜牛奶;

方案二:将一部分制成,其余制成酸奶销售,并恰好4天完成;

(1)你认为选择哪种方案获利多,为什么?

(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?

5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点远的那辆车一共行驶了多少公里?

一元一次方程复习题

学号 班级 姓名

一、填空题

1、下列各式中是代数式的有 个

3a+2p 3a+2p=1 3ad 5a>3 6a≠1

2、解一元一次方程的一般步骤是:

①______;②________;③________;④_________;⑤_______。

3、一元一次方程的标准形式是______;一元一次方程的简形式是________________________。在ax=b中,当a≠0时,方程有解 ;当 时,方程无解;当 时,方程有无数解。

4、下列是一元一次方程的有( )个

(A)x+1=3(B)x-2y=3(C)x(x+1)=2(D)

(E) (F)3x+3>1(G)2(x-1)=2x+5

5、(1)若x(n-2)+2n=0是关于x的方程一元一次方程,则n= ,此时方程的解是x=___。

(2)若ax+x(n-2)+2n=0是关于x的一元一次方程,则a ;m=_____。

6、已知x=-2是方程2x+m-4=0的一个根,则m的值是 。

7、若k是方程2x+1=3的解,则4k+2= 。

8、当k=_____时,方程kx-2=0与2x-3=5是同解方程。

9、若x=-2是方程 的解,则 ______。

10、已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,则m= 。

11、如果关于x的方程 有解,则a= ;有无穷解,则a= ;有无解,则a= ;

12、x=-2是方程( )的解

(A)5x+3=4x-1(B) 2(x-2)=5x+2(C)

13、若 和 互为相反数,则y=_______。

与 互为倒数,则x= .

14、当x= 时, 的和为1

15、下列叙述正确的是 。

①若a=b,则a+c=b+ c ②若a=b,则a-c=b- c

③若a+c=b+ c,则a=b ④若a-c=b- c,则a=b

⑤若a=b,则ac=bc ⑥若ac=bc,则a=b

⑦若a=b,则 ⑧若 ,则a=b

⑨若a=b,则 ⑩若 ,则a=b

⑾若a=b,则a2=b2 ⑿若a2=b2,则a=b

⒀若a=b,则a3=b3 ⒁若a3=b3,则a=b

16、方程2y-6=y+7变形为2y-y=7+6,这种变形叫 ,根据是 .

17、在公式v= 0 +2t中,已知v=100,v0=20,t=4,则a=___。

18、2a3bn+1与-9am+nb3是同类项。求2m-3n= 。

二、计算

1、2x:3=5:6 3、2(x-2)-3(4x-1)=5(1-x)

三、应用题

行程问题

1、甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米.

(1) 两列火车同时开出,相向而行,经过多少小时相遇?

(2) 快车先开25分钟,两车相向而行,慢车行驶了多少小时两车相遇?

(3) 若两车同时开出,同向而行,快车在慢车的后面,几小时后快车追上慢车?

(4) 若两车同时开出,同向而行,慢车在快车的后面,几小时后快车与慢车相距720千米?

2、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑2.5千米,求乙的时速各是多少?

3、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?

4、一架飞机在两城之间飞行,风速为24千米 /小时,顺风飞行需2小时50分,逆风飞行需要3小时。

(1)求无风时飞机的飞行速度

(2)求两城之间的距离。

5、一条环行跑道长400米,甲每分钟行550米,乙每分钟行米.

(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?

(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?

销售问题

1、某书店出售一种优惠卡,花100元买这种卡后,可打6折,不买卡可打8折,你怎样选择购物方式。

2、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。则进价为每件多少元?

3、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?

4、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店多降多少元出售此商品。

5、某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润不低于5%,则至多可打多少折?

6、某种商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了还是赔了?

7、某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店盈还是亏?

人员调配问题

1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?

2、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?

3、某工人按原每天生产20个零件,到预定期限还有100个零件不能完成,若提高工作效率百分之二十五,到期将超额完成50个,问预定期限是多少天?

工程问题

1、一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成?

2、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.

数字问题

1、一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数。

2、有一个两位数,它的十位上的数字比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数。

年龄问题

1、小兵今年13岁,约翰的年龄的3倍比小兵的年龄的2倍多10岁,求约翰的年龄。

第3章 一元一次方程全章综合测试

(时间90分钟,满分100分)

一、填空题.(每小题3分,共24分)

1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.

2.若x=-1是方程2x-3a=7的解,则a=_______.

3.当x=______时,代数式 x-1和 的值互为相反数.

4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.

5.在方程4x+3y=1中,用x的代数式表示y,则y=________.

6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.

7.已知三个连续的偶数的和为60,则这三个数是________.

8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.

二、选择题.(每小题3分,共30分)

9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).

A.0 B.1 C.-2 D.-

10.方程│3x│=18的解的情况是( ).

A.有一个解是6 B.有两个解,是±6

C.无解 D.有无数个解

11.若方程2ax-3=5x+b无解,则a,b应满足( ).

A.a≠ ,b≠3 B.a= ,b=-3

C.a≠ ,b=-3 D.a= ,b≠-3

12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后次相遇,t等于( ).

A.10分 B.15分 C.20分 D.30分

14.某商场在统计今年季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).

A.增加10% B.减少10% C.不增也不减 D.减少1%

15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.

A.1 B.5 C.3 D.4

16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).

A.从甲组调12人去乙组 B.从乙组调4人去甲组

C.从乙组调12人去甲组

D.从甲组调12人去乙组,或从乙组调4人去甲组

17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.

A.3 B.4 C.5 D.6

18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )

A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)

19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张来填补空白,需要配多大尺寸的.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:

车站名 A B C D E F G H

各站至H站

里程数(米) 1500 1130 0 622 402 219 72 0

例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).

(1)求A站至F站的火车票价(结果到1元).

(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:

购票人数 1~50人 51~100人 100人以上

票 价 5元 4.5元 4元

某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.

(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?

(2)两班各有多少名学生?(提示:本题应分情况讨论)

:

一、1.3

2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)

3. (点拨:解方程 x-1=- ,得x= )

4. x+3x=2x-6 5.y= - x

6.525 (点拨:设标价为x元,则 =5%,解得x=525元)

7.18,20,22

8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]

二、9.D

10.B (点拨:用分类讨论法:

当x≥0时,3x=18,∴x=6

当x<0时,-3=18,∴x=-6

故本题应选B)

11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)

12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)

13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)

14.D

15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)

16.D 17.C

18.A (点拨:根据等式的性质2)

三、19.解:原方程变形为

200(2-3y)-4.5= -9.5

∴400-600y-4.5=1-100y-9.5

500y=404

∴y=

20.解:去分母,得

15(x-1)-8(3x+2)=2-30(x-1)

∴21x=63

∴x=3

21.解:设卡片的长度为x厘米,根据图意和题意,得

5x=3(x+10),解得x=15

所以需配正方形的边长为15-10=5(厘米)

答:需要配边长为5厘米的正方形.

22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故

100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171

解得x=3

答:原三位数是437.

23.解:(1)由已知可得 =0.12

A站至H站的实际里程数为1500-219=1281(千米)

所以A站至F站的火车票价为0.12×1281=153.72≈154(元)

(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66

解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.

24.解:(1)∵103>100

∴每张门票按4元收费的总票额为103×4=412(元)

可节省486-412=74(元)

(2)∵甲、乙两班共103人,甲班人数>乙班人数

∴甲班多于50人,乙班有两种情形:

①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得

5x+4.5(103-x)=486

解得x=45,∴103-45=58(人)

即甲班有58人,乙班有45人.

②若乙班超过50人,设乙班x人,则甲班有(103-x)人,

根据题意,得

4.5x+4.5(103-x)=486

∵此等式不成立,∴这种情况不存在.

故甲班为58人,乙班为45人.

======================================================================

3.2 解一元一次方程(一)

——合并同类项与移项

【知能点分类训练】

知能点1 合并与移项

1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.

(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.

2.下列变形中:

①由方程 =2去分母,得x-12=10;

②由方程 x= 两边同除以 ,得x=1;

③由方程6x-4=x+4移项,得7x=0;

④由方程2- 两边同乘以6,得12-x-5=3(x+3).

错误变形的个数是( )个.

A.4 B.3 C.2 D.1

3.若式子5x-7与4x+9的值相等,则x的值等于( ).

A.2 B.16 C. D.

4.合并下列式子,把结果写在横线上.

(1)x-2x+4x=__________; (2)5y+3y-4y=_________;

(3)4y-2.5y-3.5y=__________.

5.解下列方程.

(1)6x=3x-7 (2)5=7+2x

(3)y- = y-2 (4)7y+6=4y-3

6.根据下列条件求x的值:

(1)25与x的是-8. (2)x的 与8的和是2.

7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.

8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.

知能点2 用一元一次方程分析和解决实际问题

9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?

10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.

11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.

(1)爸爸追上小明用了多长时间?

(2)追上小明时距离学校有多远?

【综合应用提高】

12.已知y1=2x+8,y2=6-2x.

(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?

13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.

【开放探索创新】

14.编写一道应用题,使它满足下列要求:

(1)题意适合一元一次方程 ;

(2)所编应用题完整,题目清楚,且符合实际生活.

【中考真题实战】

15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.

(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.

(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).

:

1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.

(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.

2.B [点拨:方程 x= ,两边同除以 ,得x= )

3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)

4.(1)3x (2)4y (3)-2y

5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .

(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.

(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.

(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,

系数化为1,得y=-3.

6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.

(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,

系数化为1,得x=-10.

7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]

8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]

9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.

解这个方程,得x=7.

答:桶中原有油7千克.

[点拨:还有其他列法]

10.解:设应该从盘A内拿出盐x克,可列出表格:

盘A 盘B

原有盐(克) 50 45

现有盐(克) 50-x 45+x

设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.

解这个方程,得x=2.5,经检验,符合题意.

答:应从盘A内拿出盐2.5克放入到盘B内.

11.解:(1)设爸爸追上小明时,用了x分,由题意,得

180x=80x+80×5,

移项,得100x=400.

系数化为1,得x=4.

所以爸爸追上小明用时4分钟.

(2)180×4=720(米),1000-720=280(米).

所以追上小明时,距离学校还有280米.

12.(1)x=-

[点拨:由题意可列方程2x+8=6-2x,解得x=- ]

(2)x=-

[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]

13.解:∵ x=-2,∴x=-4.

∵方程 x=-2的根比方程5x-2a=0的根大2,

∴方程5x-2a=0的根为-6.

∴5×(-6)-2a=0,∴a=-15.

∴ -15=0.

∴x=-225.

14.本题开放,不.

15.解:(1)设CE的长为x千米,依据题意得

1.6+1+x+1=2(3-2×0.5)

解得x=0.4,即CE的长为0.4千米.

(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),

则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);

若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),

则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).

故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).

..我编一个吧

3x=6 5x+10=20 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ax+b=cx+d a b c d 随意编

x=(d-b)/(a-c)

初一数学方程50道以及解法

初一数学方程50道以及解法 1、某工厂甲、乙、丙三个工人每天所生产的机器零件数是:甲和乙的比是3:4,乙和丙的比是5:6,若乙每天生产的件数比甲和丙两人的和少931件,问每个工人每天生产多少件?

2、已知初一(1)与初一(2)班各有44人,各有一些学生参加课外天文小组,(1)班参加天文小组的人数恰好是(2)班没有参加的人数的1/3,(2)班参加天文小组的人数是(1)班没有参加的人数的1/4,问两个班参加的人数各是多少?

3.某几关有三个部门,A部门有84人,B部门有56人,C 部门有60人。如果每个部门按照相同的比例裁减

人员,使这个几关留下150人。求 C 部门留下的人数是多少?

4.某车间有60名工人,生产某种配套产品,该产品由一个螺栓赔两个螺母而成。每个工人每天平均生产螺栓14个或螺母20个。应该分配多少工人生产螺栓,多少工人生产螺母,才能使生产出的螺栓和螺母刚好配套?

一元一次方程的应用测试题(B卷)

一、填空题(每小题3分,共18分)

1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.

(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;

(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.

2.为改善生态环境,避免水土流失,某村积极植树造林,原每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则植树__________棵.

3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.

4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.

5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.

6.一种品现在售价56.10元,比原来降低了15%,问原售价为__________元.

二、选择题(每小题3分,共24分)

7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是

A.20 B.33 C.45 D.54

8.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么

A.甲比乙更优惠 B.乙比甲更优惠

C.甲与乙同等优惠 D.哪家更优惠要看原价

9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为

A.(x y)千米/小时 B.(x-y)千米/小时

C.(x 2y)千米/小时 D.(2x y)千米/小时

10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是

A.a米 B.(a 60)米 C.60a米 D. 米

11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为

A.1-( )m B.5- m

C. m D.以上都不对

12.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为

A.x-1=5(1.5x) B.3x 1=50(1.5x)

C.3x-1= (1.5x) D.180x 1=150(1.5x)

13.某商品价格a元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种产品价格为

A.a元 B.1.08a元 C.0.972a元 D.0.96a元

14.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为

全月应纳税金额 税率(%)

不超过500元 5

超过500元到2000元 10

超过2000元至5000元 15

…… ……

A.1900元 B.1200元 C.1600元 D.1050元

三、简答题(共58分)

15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之为__________.

(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之为____.

(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之为______.

(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).

(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积.

16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?

17.(9分)小赵和小王交流暑中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.

18.(9分)一批树苗按下列方法依次由各班领取:班取100棵和余下的 ,第二班取200棵和余下的 ,第三班取300棵和余下的 ,……树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.

19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.

20.(9分)初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.

一、1.(1)25 (2)200 2.960 3.8π 4.80%x=5 3 10 5.36 6.66

二、7.A 8.B 9.C 10.B 11.B 12.D 13.C 14.C

三、15.(1)10 100 0 (2)8 96 4 (3)15 75 10 (4)6.4 128.6 (5)大 圆

四、16.设胜了x场,可列方程:2x (8-x)=13,解之得x=5

17.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x 1,x 2,x 3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.

18.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由、第二两个班级的树苗数相等可列方程:

100 (x-100)=200 〔x-200-100- ·(x-100)〕,也可设有x个班级,则一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的 ”也是一个班级的树苗数的 ,由两班的树苗相等,可得方程:

100(x-1) x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得 =100,还可以设每班级取树苗x棵,得 =100.

19.购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.8x 2.6·(36-x)=100-27.60,

解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.

望采纳

初一数学方程50道级解法

1:

(3x+2/3)-(x-1/6)=0

3x+2/3-x+1/6=1

2x+4/6+1/6=1

2x+5/6=1

2x=1/6

x=1/12

因为5x-3(m-5)=1的解相同,所以把x=1/12代入得:

5x1/12-3(m-5)=1

5/4m-25/12=1

5/4m=37/12

m=37/15

m-1/3=37/15-1/3=32/15

2:

2kx-6=(k+2)x

kx-6-2x=0

x(k-2)=6

x=(k-2)/6>0

因为解要正整数,所以k>2

当k取4时,得:

8x-6=(4+2)x

2x=6

x=3

3:

10(3/4-4)=7x

30/4-40=7k

7.5-40=7x

7x=-32.5

x=-65/14

4:

4x+9/5-3-2x/3=1

60x+27-45-10x=15

50x=33

x=0.66

5:

x-x-1/2=2-x-1/5

-1/2=2-x-1/5

x=1.3

6:

0.1x-10-2x-5=1.2

1x-100-20x-50=12

-19x=162

x=-19/162

请采纳,祝学习进步!50道太多了,自己也可以在书上网上找呀或者随便编,你为啥子要题呢

解一道初一数学方程题

x=2007

1/(1+a+ab)=abc/(abc+a+ab)=bc/(1+bc+b)=c/(1+c+ac)

同理:1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ac)=1

初一数学方程题谁能给我50道

自己找

初一数学方程组 速。

2y-2x+1=0

4y-4x+2=0

4y-4x+2+4x+y-1=0

y=-0.2

x=0.3

初一数学方程组计算

{3(X+Y)=126 (1) 去括号: 3X+3Y=126 (1)

4(X+10)=5Y+20 (2) 去括号:4X+40=5Y+20 (2)

(1)式变(3)式:3X=126-3Y 两边同除以3得:

X=42-Y (3) 将(3)代入(2):

4(42-Y)+40=5Y+20 168-4Y+40=5Y+20

9Y=188 Y=188/9 将Y=188/9代入(3)得:

X=42-188/9 X=378/9-188/9

X=190/9

两式相加,得到20x=60,x=3,带入个式子得到,y=2

初一数学方程应用题

1.一船从甲地顺流航行到乙地用了4小时,从乙地回甲地用了6小时。已知船在静水中速度是10千米/时,求水流速度。

2.某服装厂成衣车间有39人,每人每天可加工上衣5件或裤子8条,应怎样分配加工上衣和裤子的人数,才能使上衣和裤子配套呢?(这道只要把写出来就行,可不列式)

3.一张方桌由一个桌面和四条腿组成,1立方米木料可制作桌面50张或桌腿300条,现有5立方米木料,问有多少木料制作桌面,多少木料制作桌腿,正好配成方桌多少张?

初一数学方程应用题怎么解?

如何解一元一次方程应用题

一、 如何根据实际问题列方程

1、实际问题与数学知识的相互转换

数学来源于实践,在实际问题中,我们应学会用数学的观点考察与分析问题,我们经常是这样。

列一元一次方程解题,就是根据已知条件,列出一个一元一次方程,通过求方程的解达到解决问题的目的,列方程的关键是抓住问题中有关数量的相等关系,即找到一个包含题目含义的数量关系,所以在列方程时,要把握三个重要环节:

①整体地、系统地审题,弄清题意和其中的数量关系,用字母表示适当的未知数。

②找出能表示问题含义的一个主要的“等量关系”。

③根据等量关系中涉及的量,列出表示式及方程,正确求解。

2、利用一元一次方程解决实际问题的常见题型:

题型 基本量,基本数量关系 寻找相等关系的思路方法

等积形式问题 常见几何图形的长、宽、高、面积、周长、体积的公式,及相互之间的关系。 (1)形变积不变

(2)形变积也变,但重量不变

利息问题 本息和、本金、利息、利息和、利息税、期数的关系。 利息=本金×利率×期数

本息和=本金+利息

年龄问题 大小两个年龄不会变 抓住年龄增长,一年一岁,人人平等

数字问题 多位数的表示方法: 是一个多位数,它可表示为:

1. 抓住数字间或新数、原数之间的关系,寻找相等关系。

2. 常需设间接未知数。

比例问题 甲:乙:丙=a:b:c 各部分量之和=总量

设其中一份为x,由已知各部分量在总量中所占的比例,可得各部分量的代数式。

追及问题 路程、速度、时间的关系 路程=速度×时间

甲走的路程与乙走的路程之间关系等式。

相遇问题 路程、速度、时间的关系 甲走的路程+乙走的路程=A、B两地间的路程

航行问题 顺水速度、静水速度、水流速度、时间、路程、速度之间的关系。 两地间距离不变

顺水速度=静水速度+水流速度

逆水速度=静水速度-水流速度

三、设未知数的方法:

根据具体问题作具体分析,设未知数通常有两种方法:

①直接设未知数法:

即题目里问什么,就设什么作为未知数,这样设之后,只要能求出所列方程的解,就可以直接求得题目的所问。在多数情况下,应用题都可以直接设未知数求解。

②间接设未知数法:

有些问题,若采用直接设未知数法,则不易列出方程,这时可以考虑采取间接设未知数法,即通过间接的桥梁作用。来达到求解的目的。按比例分配问题,和、、倍、分问题,整数的组成问题等均可用间接设未知数法。

二、典型例题

例1. 某面粉仓库存放的面粉运出15%后,还剩余40千克,问这个仓库原来有面粉多少千克?

分析:把仓库中存放的面粉运出去,仓库中的面粉就比原来减少了,因此可以发现这道应用题隐含这样的一个相等关系:原来重量-运出重量=剩余重量

利用直接方法设原来重量为x千克,则易列方程。

解:设原来重量为x千克,则运出重量为15%x,根据题意得:

解之得:

经检验,符合题意

答:原来重量为50000千克。

例2. 一队学生去校外进行军事训练,他们以5千米/时的速度行进,走了18分钟,此时,学校要将一个紧急通知传给队长,通讯员从学校出发骑脚踏车以14千米/时的速度按原路追上去。通讯员用多少时间可以追上学生队伍?

分析:这是一个追及问题,由于通讯员从学校出发按原路追学生队伍,所以与学生是同向而行且同地。所以有以下相等关系:

通讯员行进路程=学生行进路程

路线图示如下:设通讯员需x小时追上学生队伍

解:设通讯员需x小时追上学生队伍,根据题意得:

解之得:

经检验,符合题意

答:通讯员用10分钟可以追上学生队伍。

例3. 在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处的人数为在乙处人数的2倍,应调往甲、乙两处各多少人?

分析:设应调往甲处x人,则调往乙处(20-x)人,那么甲、乙两处的人数可列出下表:

解:设应调往甲处x人,则调往乙处(20-x)人,根据题意得:

解之得:

经检验,符合题意

答:应调往甲处17人,乙处3人。

例4. 一个两位数,十位上的数字与个位上的数字和为11,如果把十位上的数字与个位上的数字对调,则所得新数比原数大63,求原两位数。

分析:若直接设这两位数很难求解,根据已知条件,可间接设原来两位数的个位上的数字为x,则十位上的数字为11-x。

解:设原来两位数的个位上的数字为x,根据题意得:

解之得:

答:所求两位数为29。

例5. 某商品的售价为每件900元,为了加大参与市场竞争力度,商店按售价的9折再让利40元酬宾,此时仍可获利10%,此商品的进价是多少元?

分析:本题属商品利润问题:此类问题的基本量关系有:

商品利润=商品售价-商品进价

可利用列方程的等量关系是:商品现售价-商品进价=商品进价×商品的利润率,即(商品原售价×90%-40)-商品进价=商品进价×商品的利润率。

解:设此商品进价为x元,根据题意,得:

解这个方程,得:

经检验,符合题意

答:此商品进价为700元。

说明:商品利润问题,常用于列方程的等量关系是:

商品售价-商品进价=商品利润

例6. 某暑将带领该校市级“三好学生”去参加夏令营,甲旅行社说:“如果买全票一张,则其余学生可享受半价优惠”,乙旅行社说:“包括在内全部按全票价的6折优惠”,若全票价为240元。

(1)设学生数为x,甲旅行社收费为y甲,、乙旅行社收费为y乙,分别计算两家旅行社的收费;

(2)当学生是多少人时,两家旅行社的收费一样。

分析:本题是现实生活中经常出现的问题:

(1)由两家旅行社的规定费用,根据参加人数可直接计算出两家旅行社的收费。

(2)由两家旅行社收费可得方程,进而可求得学生人数

解:(1)设学生人数为x人,则

(2)根据题意,得:

解这个方程得:

答:当学生数为4时,两家旅行社收费一样。

说明:本题如果你是,你应该选择哪家旅行社呢?那么这个问题就成了先计算两家旅行社费用,后比较费用的多少了。

例7. 依法纳税是每个公民的义务,《中华个人所得税法》规定,有收入的公民依照下表中的规定的税率交纳个人所得税。

1999年规定,上表中“全月应纳税所得额”是从收入中减去800元后的余额,例如:某人月收入1020元,减去800元,应纳税所得额应是220元,应交个人所得税是: 元。

王老师每月收入是相同的,且1999年第四季度交钠个人所得税99元,问王老师每月收入是多少元?

分析:如果某人月收入不超过1300元(=800+500),那么每月交纳个人所得税不超过25元(=500×5%),如果月收入超过1300元,但不超过2800元(=800+2000)。那么每月交纳个人所得税在25元到175元。 ,如果月收入超过2800元,那么每月交纳个人所得税在175元以上。因为王老师每月交个人所得税为99÷3=33元,则他的月收入在1300元至2800元之间。利用月交纳个人所得税33元的等量关系可列方程求解。

解:设王老师的月收入为x元,根据题意,得:

解之得:

经检验,符合题意

答:王老师的月收入为1380元。

说明:在解题前先完成一个判断,即分类讨论,估计王老师月收入落在哪个范围内,然后才便于列出方程。

【模拟试题】(答题时间:80分钟)

一. 填空题

1. 买3支钢笔,5支圆珠笔共用了26.8元,一支钢笔3.6元,则一支圆珠笔是________元?

2. 课外活动小组女同学原来占全组人数的 ,加入4个女同学后,女同学就占全组人数的 ,则课外小组原来有__________人?

3. 把1.26m铁丝围成一个长方形,使长比宽多0.18m,则长方形的长是_________m,宽是_________m。

4. 一件商品售价为6元,利润是成本的20%,如果售价提高到6.5元,那么利润率为_______%。

5. 一段路程是s千米,步行要走a小时,骑脚踏车要行b小时(a>b),步行比骑脚踏车每小时慢___________千米。

6. 一件工程,甲单独做需要a天完成,乙单独做需要b天完成,两人合作1天完成的工作是_______________。

7. 一个梯形的上底是8cm,下底比上底多4cm,它的面积是50cm2,那么梯形的高是_____________cm。

8. 若把横截面为正方形,且边长为20cm的一根钢材锻造成长、宽、厚分别为50cm、30cm、20cm的长方体底板一块,则需用这根钢材___________cm。

9. 已知甲的跑步速度是7米/秒,乙的跑步速度是6.5米/秒,现甲让乙先跑1秒,然后追乙,经x秒便可追上,则x=_________秒。

10. 若某商场销售A型、B型、C型三种手机共255部,其中A型、B型、C型手机的数量比为3:5:9,则该商场共销售A型手机_____________部。

二. 选择题

1. 三个连续正整数的和是477,那么这三个数中小的数是( )

A. 158 B. 159 C. 160 D. 161

2. 一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是( )

A. 16 B. 25 C. 38 D. 49

3. 有含盐20%的盐水100kg,要使其浓度为40%,需要加盐( )

A. B.

C. D.

4. 某时装标价为650元,某女士以5折又少30元购得,业主净赚50元,那么此时装进价为( )

A. 275元 B. 295元

C. 245元 D. 325元

5. 甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组剩下的人数恰是乙组现有人数的一半多2人,设乙组原有x人,则可列方程为( )

A.

B.

C.

D.

6. 已知轮船在河流中来往航行于A、B两个码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的路程?若设A、B两码头间的路程为xkm,则所列方程为:( )

A. B.

C. D.

7. 甲、乙两小组上月生产零件数的比是2:5,月底甲组实际生产超过的15%,乙组还有的4%未完成,两组全月共生产零件4970个,求甲、乙两组上月各生产零件多少个?若设甲组上月生产x个零件,下列方程正确的是( )

A.

B.

C.

D.

8. 甲、乙两人骑脚踏车同时从相距4800米的两地同向而行,2小时甲追上乙,甲比乙每小时多骑的千米数是( )

A. 4.8千米 B. 2.4千米

C. 2400千米 D. 480千米

9. 我国股市交易中每买卖一次需交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为( )

A. 2000元 B. 1925元

C. 1835元 D. 10元

三. 解答题

1. 某同学在一次英语考试中,试题由50道选择题组成,评分标准规定,每道题的选对得3分,不选得0分,选错倒扣1分,已知该同学5道未做得了103分,问这位同学选错了多少道题的?

2. 某市出租公司的计程车收费标准如下,3km以内(含3km)收费8元,超过3km的部分按每1km收费1.5元。

(1)写出应收费y(元)与计程车行驶的路程xkm之间的关系式:

(2)小明乘计程车行驶6km,应付多少元?

(3)若小李付车费17元,则小李乘车行驶了多少km?

3. 为了准备小明6年后上大学的学费5000元,他的父母现在就参加了教育储蓄,下面有两种储蓄方式:

(1)直接存一个6年期,年利率为2.88%。

(2)先存一个3年期的,3年后将本利和自动转存一个3年期,3年期的年利率是2.7%。你认为小明的父母应选择哪种储蓄较好,为什么?

4. 某地的水电站发电了,电费规定,若每月用电不超过24度,就按每度9分收费,若超过24度,超出的部分按每度2角收费,已知某月甲家比乙家多交电费9角6分。(用电按整数度数计算),问甲、乙两家各交了多少电费?

帮我出50道一元一次方程,要有括号,有分母的,并写上(七年级的)

1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 +1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1

=2

3x=6-x

4x-1=3+6

5X+8=6X-7

5x+15-2x-2=10

2x-4+5-5x=-1

50-3x=20

3(x+2)=8

7X-6=8

5(2x+7)=55

(8-x)(6-2X)=10

9x-8x=19

5X+40=100

36-15x=6

6-3(x+2/3)=2/3 3(2x+1)=12 1/5(x+15)=1/2-1/3(x-7) 1/7(x+14)=1/4(x+20)

1/3(x+1)=1/7(2x-3)

只能找这么多了 凑合凑合吧

50道初一一元一次方程计算题 难一点

7(2x-1)-3(4x-1)=4(3x+2)-1;

(5y+1)+ (1-y)= (9y+1)+ (1-3y);

20%+(1-20%)(320-x)=320×40%

2(x-2)+2=x+1

2(x-2)-3(4x-1)=9(1-x)

x/3 -5 = (5-x)/2

2(x+1) /3=5(x+1) /6 -1

(1/5)x +1 =(2x+1)/4

(5-2)/2 - (4+x)/3 =1

x/3 -1 = (1-x)/2

(x-2)/2 - (3x-2)/4 =-1

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

2(x-2)-3(4x-1)=9(1-x)

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

2(x-2)+2=x+1

1.7(2x-1)-3(4x-1)=4(3x+2)-1

2.(5y+1)+ (1-y)= (9y+1)+ (1-3y)

3.[ (- 2)-4 ]=x+2

4.20%+(1-20%)(320-x)=320×40%

5.2(x-2)+2=x+1

6.2(x-2)-3(4x-1)=9(1-x)

7.11x+64-2x=100-9x

8.15-(8-5x)=7x+(4-3x)

9.3(x-7)-2[9-4(2-x)]=22

10.3/2[2/3(1/4x-1)-2]-x=2

11.5x+1-2x=3x-2

12.3y-4=2y+1

13.87X13=5

14.7Z/93=41

15.15X+863-65X=54

16.58Y55=27489

17.2(x+2)+4=9

18.2(x+4)=10

19.3(x-5)=18

20.4x+8=2(x-1)

21.3(x+3)=9+x

22.6(x/2+1)=12

23.9(x+6)=63

24.2+x=2(x-1/2)

25.8x+3(1-x)=-2

26.7+x-2(x-1)=1

27.x/3 -5 = (5-x)/2

28.2(x+1) /3=5(x+1) /6 -1

29.(1/5)x +1 =(2x+1)/4

30.(5-2)/2 - (4+x)/3 =1

15x-8(5x+1.5)=181.25+x

3X+189=521

4Y+119=22

3X189=5

8Z/6=458

3X+77=59

4Y-6985=81

87X13=5

7Z/93=41

15X+863-65X=54

58Y55=27489

1.2(x-2)-3(4x-1)=9(1-x)

2.11x+64-2x=100-9x

3.15-(8-5x)=7x+(4-3x)

4.3(x-7)-2[9-4(2-x)]=22

5.3/2[2/3(1/4x-1)-2]-x=2

6.2(x-2)+2=x+1

7.0.4(x-0.2)+1.5=0.7x-0.38

8.30x-10(10-x)=100

9.4(x+2)=5(x-2)

10.120-4(x+5)=25

11.15x+863-65x=54

12.12.3(x-2)+1=x-(2x-1)

13.11x+64-2x=100-9x

14.14.59+x-25.31=0

15.x-48.32+78.51=80

16.820-16x=45.5×8

17.(x-6)×7=2x

18.3x+x=18

19.0.8+3.2=7.2

20.12.5-3x=6.5

21.1.2(x-0.64)=0.54

22.x+12.5=3.5x

23.8x-22.8=1.2

24.1 50x+10=60

25.2 60x-30=20

26.3 3^20x+50=110

27.4 2x=5x-3

28.5 90=10+x

29.6 90+20x=30

30.7 6+3x=700

1 2x-10.3x=15

2 0.52x-(1-0.52)x=80

3 x/2+3x/2=7

4 3x+7=32-2x

5 3x+5(138-x)=540

6 3x-7(x-1)=3-2(x+3)

7 18x+3x-3=18-2(2x-1)

8 3(20-y)=6y-4(y-11)

9 -(x/4-1)=5

10 3[4(5y-1)-8]=6

(1)-3x-6x2=7

(2)5x+1-2x=3x-2

(3)3y-4=2y+1

(4)3y-4=y+3

(5)3y-y=3+4

(6)0.4x-3=0.1x+2

(7)5x+15-2x-2=10

(8)2x-4+5-5x=-1

(9)3X+189=521

(10)4Y+119=22

(11)3X189=5

(12)8Z/6=458

(13)3X+77=59

(14)4Y-6985=81

(15)87X13=5

(16)46/x=23 x=2

(17)64/x=8 x=8

(18)99/x=11 x=9