高三数学知识点 高三数学知识点整理目录
高三下册数学知识点归纳总结
(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;很多学生在复习高三下册数学时,因为之前没有进行系统的总结,导致复习时效率不高。下面是由我为大家整理的“高三下册数学知识点归纳总结”,仅供参考,欢迎大家阅读本文。
高三数学知识点 高三数学知识点整理目录
高三数学知识点 高三数学知识点整理目录
如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。
高三下册数学知识点归纳1
一、函数的定义域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于1;
5、三角函数正切函数y=tanx中x≠kπ+π/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;常用求法:
1、定义法;
2、换元法;
3、待定系数法;
4、函数方程法;
5、参数法;
6、配方法
三、函数的值域的常用求法:
1、换元法;
2、配方法;
3、判别式法;
4、几何法;
5、不等式法;
6、单调性法;
7、直接法
四、函数的最值的常用求法:
1、配方法;
2、换元法;
3、不等式法;
4、几何法;
5、单调性法
五、函数单调性的常用结论:
1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。
2、若f(x)为增(减)函数,则-f(x)为减(增)函数。
3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:
1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。
高三下册数学知识点归纳2
1.数列的定义、分类与通项公式
(1)数列的定义:
①数列:按照一定顺序排列的一列数.
②数列的项:数列中的每一个数.
(2)数列的分类:
分类标准类型满足条件
无穷数列项数无限
项与项间的大小关系递增数列an+1>an其中n∈N_
递减数列an+1
常数列an+1=an
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
2.数列的递推公式
3.对数列概念的理解
(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.
(2)数列中的数可以重复出现,而中的元素不能重复出现,这也是数列与数集的区别.
4.数列的函数特征
数列是一个定义域为正整数集N_(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_).
高三下册数学知识点归纳3
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
拓展阅读:高三数学复习方法
1、养成课前预习的习惯
高三学生在上课之前把即将要学习的内容预习一下,有个大致的了解,等到上课老师讲的时候就容易跟上老师的讲课速度和思维,也能更好的理解老师讲的内容,这样一来很大程度的提高了听课效率,就不用下课的时候再花费时间和精力去做完成上课应该完成的事情了。
2、课后及时复习
高三数学课基本上都是复习课,复习课的容量大、内容多,只靠上课的时间去掌握上课的内容是很难的,因此高三学生在下课以后,应该及时复习和巩固上课所学知识,把应该掌握的知识都掌握了,有不明白的地方就及时找老师解惑,千万不要不懂装懂,或者是不好意思去问,要知道学习中的问题是越攒越多的,现在的某一个小问题都会影响到后面的复习。
3、避免一些小错误的发生
高三复习内容多,复习时间又比较紧张,很多高三学生为了节省学习时间,对于一些小细节能忽略就忽略。要知道“细节决定成败”,学习中的小细节往往是决定成绩高低的关键因素。因此高三学生学习的时候,一定要注意拿些细节,比如:审题时仔细一些、做简答题时规范解题步骤和格式等,如果一些小毛病都没有了,那么影响成绩的外在因素就解决了,这时候针对学习内容来提高成绩就会容易一些。
2022年数学高考知识点
2.复合函数的有(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.关问题2022年数学高考知识点有哪些你知道吗?数学课程其基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,一起来看看2022年数学高考知识点,欢迎查阅!
数学高考知识点
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
一、求动点的轨迹方程的基本步骤。
1.建立适当的坐标系,设出动点M的坐标;
2.写出点M的;
3.列出方程=0;
4.化简方程为最简形式;
5.检验。
二、求动点的轨迹方程的常用 方法 :求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2.定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3.相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
求动点轨迹方程的一般步骤:
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高考数学知识点 总结
遗忘空集致误
由于空集是任何非空的真子集,因此B=?时也满足B?A。解含有参数的问题时,要特别注意当参数在某个范围内取值时所给的可能是空集这种情况。
忽视元素的三性致误
中的元素具有确定性、无序性、互异性,元素的三性中互异性对解题的影响,特别是带有字母参数的,实际上就隐含着对字母参数的一些要求。
混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
充分条件、必要条件颠倒致误
对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
“或”“且”“非”理解不准致误
命题p∨q真?p真或q真,命题p∨q?p且q(概括为一真即真);命题p∧q真?p真且q真,命题p∧q?p或q(概括为一即);绨p真?p,绨p?p真(概括为一真一)。求参数取值范围的题目,也可以把“或”“且”“非”与的“并”“交”“补”对应起来进行理解,通过的运算求解。
函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有的三角函数应该根据图像,从直观上进行判断。
忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
对数列的定义、性质理解错误
等数列的前n项和在公不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等数列的充要条件是c=0”;在等数列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等数列。
数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
错位相减求和项处理不当致误
错位相减求和法的适用条件:数列是由一个等数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
不等式性质应用不当致误
在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
忽视基本不等式应用条件致误
利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。
高三数学 知识点
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高 逻辑思维 能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”;
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;
(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平 面相 交,那么它们的交线平行”;
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。
2022年数学高考知识点相关 文章 :
★ 2022高考数学选择题答题方法
★ 高三数学知识点下册2022
★ 2022高三数学复习方法
★ 关于高考数学选择题知识点
★ 高三数学必备知识点归纳
★ cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]2022年高三数学第二轮复习方法
★ 高考数学直线方程知识点总结大全
★ 2022初三数学备战中考复习知识点大全
高三数学函数的单调性及最值知识点总结
项数有穷数列项数有限高中数学客观题中,主要考查函数的单调性、最值及其简单应用,因此同学们需要了解一下相关知识点,下面是我给大家带来的高三数学函数的单调性及最值知识点总结,希望对你有帮助。
★ 2022高考必考知识点大全高三数学函数的单调性、最值sin3a=3sina-4sin3a知识点(一)
单调性的定义:
1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1f(x2),则称f(x)是区间D上的减函数。
2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间
3、最值的定义:
值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的值.
最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值
判断函数f(x)在区间D上的单调性的方法:
(1)定义法:其步骤是:
①任取x1,x2∈D,且x1
②作f(x1)-f(x2)或作商
,并变形;
③判定f(x1)-f(x2)的符号,或比较
与1的大小;
(2)复合法:利用基本函数的单调性的复合。
(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
高三数学函数的单调性、最值知识点(二)
函数的单词性
函数的单调性也叫函数的增减性.函数的单调性是对某个区间而言的,它是一个局部概念.
单调性的单词区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间.此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
注:在单调性中有如下性质
↑(增函数)↓(减函数)
↑(增函数)+↑(增函数)= ↑(增函数) ↑(增函数)-↓(减函数)=↑(增函数) ↓(减函数)+↓(减函数)=↓(减函数) ↓(减函数)-↑(增函数)=↓(减函数)
用定义证明函数的单词性步骤
1取值
即取x1,x2是该区间崆的任意两个值且x1 2作变形 即求f(x1)-f(x2),通过因式分解,配方、有理化等方法 3定号 即根据给定的区间和x2-x1的符号确定f(x1)-f(x2)的符号 4判断 根据单词性的定义得出结论 判断函数f(x)在区间D上的单调性的方法 1定义法:其步骤是: ①任取x1,x2∈D,且x1 ②作f(x1)-f(x2)或作商 ,并变形; ③判定f(x1)-f(x2)的符号,或比较 与1的大小; 2复合法: 利用基本函数的单调性的复合。 3图象法: 即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。 函数最值 函数最值分为函数最小值与函数值。 函数最小值 设函数y=f(x)的定义域为d,如果存在M∈R满足: ①对于任意实数x∈d,都有f(x)≥M; ②存在x0∈d。使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最小值。 函数值 设函数y=f(x)的定义域为d,如果存在M∈R满足: ①对于任意实数x∈d,都有f(x)≤M, ②存在x0∈d。使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的值。 【 #高三# 导语】一轮复习中,考生依据课本对基础知识点和考点,进行了全面的复习扫描,已建构起高考基本的学科知识、学科能力和思维方法。二轮复习是承上启下的重要一环,要在一轮复习的基础上,依据考纲,落实重点,突破难点,找准自己的增长点,提高复习备考的实效性。 为你整理了《高三数学必修五知识点总结》希望可以帮助你学习! 1.高三数学必修五知识点总结 斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。 三角形斜边长等于根号下两直角边的平方和,即斜边c=√(a^2+对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。b^2) 解答过程如下: (1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a2+b2=c2 (2)a2+b2=c2求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a2+b2)。 在几何中,斜边是直角三角形的最长边,与直角相对。直角三角形的斜边的长度可以使用毕达哥拉斯定理找到,该定理表示斜边长度的平方等于另外两边长度的平方和。例如,如果其中一方的长度为3(平方,9),另一方的长度为4(平方,16),那么它们的正方形加起来为25。斜边的长度为平方根25,即5。 2.高三数学必修五知识点总结 一个推导 利用错位相减法推导等比数列的前n项和: Sn=a1+a1q+a1q2+…+a1qn-1, 同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn, 两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1). 两个防范 (1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0. (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误. 三种方法 等比数列的判断方法有: (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列. (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列. 注:前两种方法也可用来证明一个数列为等比数列. 3.高三数学必修五知识点总结 1.求导法则: (c)/=0这里c是常数。即常数的导数值为0。 (xn)/=nxn-1特别地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x) 2.导数的几何物理意义: k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。 V=s/(t)表示即时速度。a=v/(t)表示加速度。 3.导数的应用: ①求切线的斜率。 ②导数与函数的单调性的关系 已知 (1)分析的定义域; (2)求导数 (3)解不等式,解集在定义域内的部分为增区间 (4)解不等式,解集在定义域内的部分为减区间。 ③求极值、求最值。 注意:极值≠最值。函数f(x)在区间[a,b]上的值为极大值和f(a)、f(b)中的一个。最小值为极小值和f(a)、f(b)中最小的一个。 f/(x0)=0不能得到当x=x0时,函数有极值。 判断极值,还需结合函数的单调性说明。 4.导数的常规问题: (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 4.高三数学必修五知识点总结 不等式的基本性质: 性质1:如果a>b,b>c,那么a>c(不等式的传递性). 性质2:如果a>b,那么a+c>b+c(不等式的可加性). 性质3:如果a>b,c>0,那么ac>bc;如果a>b,cd,那么a+c>b+d. 性质5:如果a>b>0,c>d>0,那么ac>bd. 性质6:如果a>b>0,n∈N,n>1,那么an>bn,且. 例1:判断下列命题的真,并说明理由. 若a>b,c=d,则ac2>bd2;() 若,则a>b;(真) 若a>b且abb;(真) 若|a|b2;(充要条件) 命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性. a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥) 说明:强调在一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备. 例4:设a>b,n是偶数且n∈N,试比较an+bn与an-1b+abn-1的大小. 说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想. 5.高三数学必修五知识点总结 1、等比中项 如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。 2、等比数列通项公式 an=a1xq’(n—1)(其中首项是a1,公比是q) an=Sn—S(n—1)(n≥2) 前n项和 当q≠1时,等比数列的前n项和的公式为 Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1) 当q=1时,等比数列的前n项和的公式为 Sn=na1 3、等比数列前n项和与通项的关系 an=a1=s1(n=1) an=sn—s(n—1)(n≥2) 4、等比数列性质 (1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq; (2)在等比数列中,依次每k项之和仍成等比数列。 (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n} (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等数列;反之,以任一个正数C为底,用一个等数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等数列是“同构”的。 (5)等比数列前n项之和Sn=a1(1—q’n)/(1—q) (6)任意两项am,an的关系为an=am·q’(n—m) (7)在等比数列中,首项a1与公比q都不为零。 注意:上述公式中a’n表示a的n次方。 高三数学要把握学习的重点内容,要积极构建知识体系 “知己知彼,百战不殆。”想学好数学,首先要熟悉教材。建议同学们在进入高三前的那个暑里通读高一、高二教材,学完高三教材后再找时间通读高三教材。立足课本,迅速激活已尝过的各个知识点,对各部分知识的掌握程度要有一定的了解,这样在做题、听课时才有针对性。 下面列举各章节的重点内容,大家要学习掌握。 函数与不等式 代数以函数为主干,方程、不等式与函数的结合是“热点”。关于函数性质。单调性、奇偶性、周期性、对称性及反函数等处处可考,常以具体函数结合图像的几何直观展开,有时作适当抽象。 关于二次函数。二次函数是重中之重,有关性质及应用的训练要深入、广泛。函数值域(最值),以二次函数或转化为二次函数的值域,特别是含参变量的二次函数值域研究为重点(1)刻画函数(比初等方法细微);;方法以突出配方、换元和基本不等式法为重点。一元二次方程根的分布与讨论,一元二次不等式解的讨论,二次曲线交点问题,都与二次函数息息相关,在训练中应占较重。 关于不等式证明。要突出比较法和利用基本不等式的公式法。放缩法虽不是高考重点,但历年考题中都或多或少用到了放缩法,所以掌握几种简单的放缩技巧是必要的。 关于解不等式。以熟练掌握一元二次不等式及可化为一元二次不等式的综合题型为目标,突出灵活转化,突出分类讨论。 数列排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 以等、等比两种基本数列为载体考查数列的通项、求和、极限等为重点。关注递推数列。 三角函数 考题难度不大。训练中要抓基本公式的熟练运用,突出正用、逆用和变式用。 平面向量 平面向量加、减坐标计算,数量积及其几何意义,向量垂直条件,平面上两点间的距离公式,线段的定比分点、平移公式。 立体几何 突出“空间”、“立体”,即把线段、线面、面面的位置关系考查置于某几何体的情境中。几何体以棱柱、棱锥为重点。棱柱中又以三棱柱、正方体为重点;棱锥以一条侧棱或一个侧面垂直于底面为重点,棱柱和棱锥的结合体也要重视。位置关系以判断或证明垂直为重点,突出三垂线定理及逆定理的灵活运用。空间角以二面角为重点,强化三垂线定理定角法。空间距离以点面距、线面距为重点,二者结合尤为重要。等积转化、等距转化是最常用方法。面积、体积计算,解答题涉及棱锥,特别是三棱锥,棱柱居多,因为三棱锥体积求法灵活,思路宽广。空间向量在研究线面、面面关系、空间角和距离等方面的应用是重点。 解析几何 以基本性质、基本运算为目标。客观题要照顾面,解答题应综合,突出直线和圆锥曲线的交点、弦长、轨迹等,突出与函数的联系。 排列组合、二项式定理 主要掌握两个计数原理,排列、组合数计算公式,组合数性质。二项式定理和二项展开式的性质及其应用。 概率和统计 主要掌握等可能、互斥、相互、N次重复试验恰好发生K次的概率,用样本频率分布估计总体分布,用样本估计总体的期望和方。 导数 重点导数的概念,式项式函数的导数,用导数研究函数的单调性、极值、最值。 ,基础知识。注重基础知识的学习,巩固基础。 第二,解题技巧。注重学习解题技巧和解题方法。通过题目,联想知识点。 第三,注重难题。对于数学中的难题要格外重视,加大学习力度。 数学的大部分题型都是固定的,但是知识面又很广。比如道大题一般是三角函数,第四题是统计,第五题是圆锥曲线,一道大题是导数。要掌握重点,主要是掌握不同类型题目中的思维,可以多做几套练习题,去找不同题目的思维方式。 数列,图形等。只要是高考中出现的知识点都是重点,都是要把握的,提高一分,干掉千人。这句话是正确的,一定要把知识点吃透了。 高考数学有哪些答题技巧呢?高考数学中有哪些高频的题型呢?我为大家整理了一些。 数学高频题型及答题注意事项 三角函数。注意归一公式、诱导公式的正确性 数列题。1.证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;2. 一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单 立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。 概率问题。1.搞清随机试验包含的所有基本和所求包含的基本的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方、标准公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样; 高中数学如何学习?史上最强高考励志书《高考蝶变》教你怎样提高成绩,淘宝搜索《高考蝶变》购买。 高考数学答题时有何技巧 1. 先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用和或,隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号). 2. 注意一问有应用前面结论的意识. 3. 注意分论讨论的思想. 4. 不等式问题有构造函数的意识. 5. 恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法). 6.整体思路上保6分,争10分,想14分. 高考数学是一门比较占分的科目,但数学也比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。高考数学知识点2023有哪些?一起来看看高考数学知识点2023,欢迎查阅! 高中数学各知识点公式定理记忆口诀 与函数 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负。 三角函数 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp; 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和积。条件等式的证明,方程思想指路明。 公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 不等式 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的 方法 ,实数性质威力大。求与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 数列 等等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考: 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再定,从K向着K加1,推论过程须详尽,归纳原解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。理来肯定。 复数 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。 辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,杨辉三角形。两条性质两公式,函数赋值变换式。 立体几何 点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。 垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。 平面解析几何 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称。 笛卡尔的观点对,点和有序实数对,两者―一来对应,开创几何新途径。 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。 高三数学 复习重要知识点 知识点1 1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数; 2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数; 3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称; 4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。 5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; 6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称). 知识点2 一、充分条件和必要条件 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。 二、充分条件、必要条件的常用判断法 1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可 2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。 3.法 在命题的条件和结论间的关系判断有困难时,可从的角度考虑,记条件p、q对应的分别为A、B,则: 三、知识扩展 (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题; (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题; (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。 高考数学复习重点 总结 ,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节 主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。 第二,平面向量和三角函数 重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。 第三,数列 数列这个板块,重点考两个方面:一个通项;一个是求和。 第四,空间向量和立体几何 在里面重点考察两个方面:一个是证明;一个是计算。 第五,概率和统计 这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。 第六,解析几何 这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。 第七,押轴题 考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。 高考数学知识点2023相关 文章 : ★ 2021年数学高考知识点 ★ 高中数学知识点总结归纳 ★ 高考数学知识点大全 ★ 高考数学知识点总结归纳 ★ 高考数学知识点归纳整理 ★ 高考数学知识点总结整理 ★ 2020高考数学知识点总结大全 ★ 高考数学必考知识点整理 ★ 2020高考数学知识点大全 ★ 2020高考文科数学知识点 1.高三数学必修一知识点总结 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程 (1)方程k=f(x)有解k∈D(D为f(x)的值域); (2)a≥f(x)恒成立a≥[f(x)]max,; a≤f(x)恒成立a≤[f(x)]min; (3)(a>0,a≠1,b>0,n∈R+); logaN=(a>0,a≠1,b>0,b≠1); (4)logab的符号由口诀“同正异负”记忆; alogaN=N(a>0,a≠1,N>0); 6.映射 判断对应是否为映射时,抓住两点: (1)A中元素必须都有象且; (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 7.函数单调性 (1)能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性; (2)依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 8.反函数 对于反函数,应掌握以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性; (5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A). 9.数形结合 处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系. 10.恒成立问题 恒成立问题的处理方法: (1)分离参数法; 2.高三数学必修一知识点总结 反比例函数 形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。 上面给出了k分别为正和负(2和—2)时的函数图像。 当K>0时,反比例函数图像经过一,三象限,是减函数 当K<0时,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。 知识点: 1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 3.高三数学必修一知识点总结 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (2)对数函数的值域为全部实数。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 4.高三数学必修一知识点总结 两个平面的位置关系: (1)两个平面互相平行的定义:空间两平面没有公共点 (2)两个平面的位置关系: 两个平面平行—————没有公共点;两个平面相交—————有一条公共直线。 a、平行 两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。 b、相交 二面角 (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。 (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°] (3)二面角的棱:这一条直线叫做二面角的棱。 (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。 (6)直二面角:平面角是直角的二面角叫做直二面角。 两平面垂直 两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥ 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。 5.高三数学必修一知识点总结 斜率定义 斜率用来量度斜坡的斜度,由一条直线与X轴正方向所成角的正切。 1、设直线倾斜角为α斜率为k,k=tanα=y/x 2、设已知点为(a,b)未知点为(x,y)k=(y-b)/(x-a) 斜率公式 当直线L的斜率存在时,斜截式y=kx+b,当x=0时y=b 当直线L的斜率存在时,点斜式y2-y1=k(x2-x1), 当直线L在两坐标轴上存在非零截距时,有截距式x/a+y/b=1 对于任意函数上任意一点,其斜率等于其切线与x轴正1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:方向所成的角,即k=tanα 直线斜率公式:k=(y2-y1)/(x2-x1) 两条垂直相交直线的斜率相乘积为-1:k1k2=-1. 6.高三数学必修一知识点总结 1.进行的交、并、补运算时,不要忘了全集和空集这两种特殊情况,不要忘记了借助数轴和维恩图进行求解 2.在应用条件时,易A忽略是空集的情况 3.你会用补集的思想解决有关问题吗? 4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件? 5.你知道“否命题”与“命题的否定形式”的区别吗? 6.求解与函数有关的问题易忽略定义域优先的原则 7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称这一点 8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域 9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调 10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用或不等式表示. 12.求函数的值域必须先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗? 14.解对数函数问题时,你注意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需讨论 15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值? 16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”. 19.不等式的解法及其几何意义是什么? 20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么? 21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”. 22.在求不等式的解集、定义域及值域时,其结果一定要用或区间表示;不能用不等式表示. 23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”. 24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗? 25.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。 26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在? 27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。) 28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先设时成立,再结合一些数学方法用来证明时也成立。 29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与象限的角;终边相同的角和相等的角的区别吗? 30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗? 31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗? 32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次) 33.反正弦、反余弦、反正切函数的取值范围分别是? 34.你还记得某些特殊角的三角函数值吗? 35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗? 36.函数的图象的平移,方程的平移以及点的平移公式易混: (1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5. (2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5. (3)点的平移公式:点P(x,y)按向量平移到点P'(x',y'),则x=x'+hy'=y+k. 37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围) 38.正弦定理时易忘比值还等于2R. 高中数学涉及的知识点很多,需要把高中三年的数学知识点 总结 起来,这样比较有利于复习,下面是我为大家整理的高考数学知识点归纳整理,希望对大家有所帮助! 高考数学知识点归纳整理1 考数学知识点:两角和公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cos2a=cos2a-sin2a=2cos2a-1=1-2sin2 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 高考数学知识点:圆的切线方程 (1)已知圆 . ①若已知切点 在圆上,则切线只有一条,利用垂直关系求斜率 ②过圆外一点的切线方程可设为 ,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线. ③斜率为k的切线方程可设为 ,再利用相切条件求b,必有两条切线. (2)已知圆 .过圆上的 点的切线方程为 高考数学知识点:线线平行常用 方法 总结 (1)定义:在同一平面内没有公共点的两条直线是平行直线。 (2)公理:在空间中平行于同一条直线的两只直线互相平行。 (3)初中所学平面几何中判断直线平行的方法 (4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。 (5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。 (6)面面平行的性质:若两个平行平面同时与第三个平 面相 交,则它们的交线平行。 高考数学知识点归纳整理2 高考数学知识点总结精华一 一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节 主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。 二、平面向量和三角函数 对于这部分知识重点考察三个方面:是划减与求值,,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。 高考数学知识点总结精华二 三、数列 数列这个板块,重点考两个方面:一个通项;一个是求和。 四、空间向量和立体几何 在里面重点考察两个方面:一个是证明;一个是计算。 五、概率和统计 概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……;和重复发生的概率。 高考数学知识点总结精华三 这部分内容说起来容易做起来难,需要掌握几类问题,类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的,但需要要掌握比较好的算法,来提高做题的准确度。 七、压轴题 同学们在的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。 高考数学直线方程知识点:什么是直线方程 从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。 高考数学知识点归纳整理3 1、空间立体几何的结构。包括棱柱,棱锥和棱台的结构特征。圆柱圆锥圆台和球的结构特征。 2、圆柱侧面积,圆锥侧面积,圆台侧面积,直棱柱侧面积,正棱柱侧面积和正棱台侧面积以及球的面积的求法。 3、柱、锥、台、球体积公式。 4、三视图和直观图。 5、线面平行的判断和性质。线面平行的判定定理、面面平行的判定定理、线面平行的性质定理、面面平行的性质定理。线面垂直的判定和性质。线面垂直的判定定理、面面垂直的判定定理;线面垂直的性质定理、面面垂直的性质定理。 6、统计:用样本估计总体。用样本的频率分布,估计总体的频率分布、用样本的数字特征估计总体的数字特征、方、标准。变量间的相关关系与两个变量的线性关系。 高考数学知识点归纳整理相关 文章 : ★ 高考数学必考知识点整理 ★ 高三数学必备知识点归纳 ★ 2022高考数学必考知识点考点总结大全 ★ 高考数学常考知识点整理大全 ★ 高考数学知识点总结大全 ★ 高中数学必考知识点归纳 ★(1)(sinα)^2+(cosα)^2=1 高考数学知识点总结 ★ 高考数学常考知识点 ★ 高三数学轮复习知识点 ★ 高中数学必考知识点归纳大全 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); 与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。接下来是小编为大家整理的高三数学知识点梳理,希望大家喜欢! 高三数学知识点梳理一 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。 探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的`位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 1.在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力 高三数学知识点梳理二 随机抽样 (抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取; 优点:作简便易行 缺点:总体过大不易实行 曲线y=f(x)在点(x1,f(x1))处的斜率就是函数f(x)在点x1处的导数方法 (1)抽签法 一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。 (抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性的可能性很大) (2)随机数法 随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数或计算机产生的随机数进行抽样。 分层抽样 分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显异。共同点:每个个体被抽到的概率都相等N/M。 定义 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。 整群抽样 定义 什么是整群抽样 整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。 应用整群抽样时,要求各群有较好的代表性,即群内各单位的异要大,群间异要小。 优缺点 整群抽样的优点是实施方便、节省经费; 整群抽样的缺点是往往由于不同群之间的异较大,由此而引起的抽样误往往大于简单随机抽样。 实施步骤 先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤: 一、确定分群的标注 二、总体(N)分成若干个互不重叠的部分,每个部分为一群。 三、据各样本量,确定应该抽取的群数。 四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。 例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。 与分层抽样的区别 整群抽样与分层抽样在形式上有相似之处,但实际上别很大。 分层抽样要求各层之间的异很大,层内个体或单元异小,而整群抽样要求群与群之间的异比较小,群内个体或单元异大; 分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。 定义 当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。 步骤 一般地,设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样: (1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等; (3)在段用简单随机抽样确定个个体编号l(l≤k); (4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。 高三数学知识点梳理三 (一)导数定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数定义 (二)导数第二定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义 (三)导函数与导数 (四)单调性及其应用 1.利用导数研究多项式函数单调性的一般步骤 (1)求f¢(x) (2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数 2.用导数求多项式函数单调区间的一般步骤 (1)求f¢(x) (2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间 高三数学知识点梳理四 1.数列的定义 按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个. 2.数列的分类 (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列. (2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列. 3.数列的通项公式 数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…, 由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循. 再强调对于数列通项公式的理解注意以下几点: (1)数列的通项公式实际上是一个以正整数集N_它的有限子集{1,2,…,n}为定义域的函数的表达式. (2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项. (3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式. 如2的不足近似值,到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式. (4)有的数列的通项公式,形式上不一定是的,正如举例中的: (5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不. 4.数列的图象 对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系: 序号:1234567 项:456780 这就是说,上面可以看成是一个序号到另一个数的的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式. 数列是一种特殊的函数,数列是可以用图象直观地表示的. 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不. 把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的,其图象是无限个或有限个孤立的点. 5.递推数列 一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.① 数列①还可以用如下方法给出:自上而下层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。 与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。接下来是小编为大家整理的高三数学知识点梳理,希望大家喜欢! 高三数学知识点梳理一 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。 探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 1.在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力 高三数学知识点梳理二 随机抽样 (抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取; 优点:作简便易行 缺点:总体过大不易实行 方法 (1)抽签法 一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。 (抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性的可能性很大) (2)随机数法 随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数或计算机产生的随机数进行抽样。 分层抽样 分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显异。共同点:每个个体被抽到的概率都相等N/M。 定义 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。 整群抽样 定义 什么是整群抽样 整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。 应用整群抽样时,要求各群有较好的代表性,即群内各单位的异要大,群间异要小。 优缺点 整群抽样的优点是实施方便、节省经费; 整群抽样的缺点是往往由于不同群之间的异较大,由此而引起的抽样误往往大于简单随机抽样。 实施步骤 先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤: 一、确定分群的标注 二、总体(N)分成若干个互不重叠的部分,每个部分为一群。 三、据各样本量,确定应该抽取的群数。 四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。 例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。 与分层抽样的区别 整群抽样与分层抽样在形式上有相似之处,但实际上别很大。 分层抽样要求各层之间的异很大,层内个体或单元异小,而整群抽样要求群与群之间的异比较小,群内个体或单元异大; 分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。 定义 当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。 步骤 一般地,设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样: (1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等; (3)在段用简单随机抽样确定个个体编号l(l≤k); (4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。 高三数学知识点梳理三 (一)导数定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数定义 (二)导数第二定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义 (三)导函数与导数 (四)单调性及其应用 1.利用导数研究多项式函数单调性的一般步骤 (1)求f¢(x) (2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数 2.用导数求多项式函数单调区间的一般步骤 (1)求f¢(x) (2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间 高三数学知识点梳理四 1.数列的定义 按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个. 2.数列的分类 (1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列. (2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列. 3.数列的通项公式 数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…, 由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循. 再强调对于数列通项公式的理解注意以下几点: (1)数列的通项公式实际上是一个以正整数集N_它的有限子集{1,2,…,n}为定义域的函数的表达式. (2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项. (3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式. 如2的不足近似值,到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式. (4)有的数列的通项公式,形式上不一定是的,正如举例中的: (5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不. 4.数列的图象 对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系: 序号:1234567 项:456780 这就是说,上面可以看成是一个序号到另一个数的的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式. 数列是一种特殊的函数,数列是可以用图象直观地表示的. 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不. 把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的,其图象是无限个或有限个孤立的点. 5.递推数列 一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.① 数列①还可以用如下方法给出:自上而下层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。 与高一高二不同之处在于,此时复习力学部高三数学必修五知识点总结
如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.高三数学要把握哪些学习的重点内容呢?
④根据定义作出结论。高三数学重要知识点总结
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;高考数学知识点2023
3.函数图像(或方程曲线的对称性)高三数学必修一知识点总结
对于不同大小a所表示的函数图形:高考数学知识点归纳整理
排列、组合、二项式定理高中三年数学有多少个知识点
★ 2022年高考复习方法技巧
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。