数据挖掘常用算法有哪些?

1、 朴素贝叶斯 朴素贝叶斯(NB)属于生成式模型(即需要计算特征与类的联合概率分布),计算过程非常简单,只是做了一堆计数。NB有一个条件性设,即在类已知的条件下,各个特征之间的分布是的。这样朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以只需要较少的训练数据即可。即使NB条件设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中的R来讲,就是特征冗余。

数据挖掘算法特有的算法是_数据挖掘算法特有的算法是什么数据挖掘算法特有的算法是_数据挖掘算法特有的算法是什么


数据挖掘算法特有的算法是_数据挖掘算法特有的算法是什么


数据挖掘算法特有的算法是_数据挖掘算法特有的算法是什么


2、逻辑回归(logistic regression) 逻辑回归是一个分类方法,属于判别式模型,有很多正则化模型的方法(L0,L1,L2),而且不必像在用朴素贝叶斯那样担心特征是否相关。与决策树与SVM相比,还会得到一个不错的概率解释,甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法online gradient descent)。如果需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者希望以后将更多的训练数据快速整合到模型中去,那么可以使用它。

3、 线性回归 线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对小二乘法形式的误函数进行优化。

4、近邻算法——KNN KNN即近邻算法,其主要过程为:计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);对上面所有的距离值进行排序;选前k个小距离的样本;根据这k个样本的标签进行投票,得到后的分类类别;如何选择一个佳的K值,这取决于数据。

5、决策树 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

6、SVM支持向量机 高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。

大数据挖掘的算法有哪些?

数据挖掘本质还是机器学习算法

具体可以参见《数据挖掘十大常见算法》

常用的就是:SVM,决策树,朴素贝叶斯,逻辑斯蒂回归等

主要解决分类和回归问题

数据挖掘的经典算法有哪些?

1. C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

2. The k-means algorithm 即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误总和小。

3. Support vector machines

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离化。

4. The Apriori algorithm

Apriori算法,它是一种影响力的挖掘布尔关联规则频繁项集的算法。它的算法核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于小支持度的项集称为频繁项集,简称频集。

关于数据挖掘的经典算法有哪些,该如何下手的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于

数据挖掘算法有哪些

以下主要是常见的10种数据挖掘的算法,数据挖掘分为:分类(Logistic回归模型、神经网络、支持向量机等)、关联分析、聚类分析、孤立点分析。每一大类下都有好几种算法,这个具体可以参考数据挖掘概论这本书(英文新版)

带你了解数据挖掘中的经典算法

数据挖掘的算法有很多,而不同的算法有着不同的优点,同时也发挥着不同的作用。可以这么说,算法在数据挖掘中做出了极大的贡献,如果我们要了解数据挖掘的话就不得不了解这些算法,下面我们就继续给大家介绍一下有关数据挖掘的算法知识。

1.The Apriori algorithm,

Apriori算法是一种有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于小支持度的项集称为频繁项集,简称频集。这个算法是比较复杂的,但也是十分实用的。

2.期望算法

在统计计算中,期望算法是在概率模型中寻找参数似然估计的算法,其中概率模型依赖于无法观测的隐藏变量。期望经常用在机器学习和计算机视觉的数据集聚领域。而期望算法在数据挖掘以及统计中都是十分常见的。

3.PageRank算法

PageRank是Google算法的重要内容。PageRank里的page不是指网页,而是创始人的名字,即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”,这个标准就是衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

3.AdaBoost算法

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,然后把这些弱分类器起来,构成一个更强的终分类器。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,后将每次训练得到的分类器后融合起来,作为后的决策分类器。这种算法给数据挖掘工作解决了不少的问题。

数据挖掘算法有很多,这篇文章中我们给大家介绍的算法都是十分经典的算法,相信大家一定可以从中得到有价值的信息。需要告诉大家的是,我们在进行数据挖掘工作之前一定要事先掌握好数据挖掘需呀掌握的各类算法,这样我们才能在工总中得心应手,如果基础不牢固,那么我们迟早是会被淘汰的。职场如战场,我们一定要全力以赴。

数据挖掘十大经典算法及各自优势

数据挖掘十大经典算法及各自优势

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。

以上是小编为大家分享的关于