球形体积公式推理(球形体积公式积公式)
球的体积公式是什么
球体体积公式是V=(4/3)πr^3,一个半圆绕直径所在直线旋转一周所成的空间几何体叫做球体,简称球,半圆的半径即是球的半径,球体有且只有一个连续曲面的立体图形。
球形体积公式推理(球形体积公式积公式)
球形体积公式推理(球形体积公式积公式)
球形体积公式推理(球形体积公式积公式)
球体在任意一个平面上的正投影都是等大的圆,且投影圆直径等于球体直径。世界上没有的球体,的球体只存在于理论中。球和圆类似,也有一个中心叫做球心。用一个平面去截一个球,截面是圆面。
球的体积公式推导过程是什么?
分析如下:
把一个半径为R的球体中心点在坐标原点o上表面分割成许多小块,每一小块的面积为ds,ds四个顶点A,B,C,D之间的距离AB=BC=CD=DA,四个角度相等,由o点指向A,B,C,D所张的立体角为dΩ,这样ds=dΩR。
把四个顶点和o点连接,形成一个接近四棱锥体【体积为hL/3 ,h是四棱锥体的高,L是四棱锥体的底面积】的微小体积,当分割的无限细密,ds接近零时候,ds= L,h = R, 并且:
hL/3=dΩR=。
是球的体积元素,对环绕一周【角度为4π】积分,就是求的体积公式。
∮dΩR/3=4πR/3。
微积分相关:
(1)定积分和不定积分
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
(2)常微分方程与偏微分方程
含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。
球体的体积是怎么推导出来的?
1.球的体积公式的推导
基本思想方法:
先用过球心 的平面截球 ,球被截面分成大小相等的两个半球,截面⊙ 叫做所得半球的底面.
(l)步:分割.
用一组平行于底面的平面把半球切割成 层.
(2)第二步:求近似和.
每层都是近似于圆柱形状的“小圆片”,我们用小圆柱形的体积近似代替“小圆片”的体积,它们的和就是半球体积的近似值.
(3)第三步:由近似和转化为和.
当 无限增大时,半球的近似体积就趋向于体积.
(具体过程见课本)
2.定理:半径是 的球的体积公式为:.
3.体积公式的应用
求球的体积只需一个条件,那就是球的半径.两个球的半径比的立方等于这两个球的体积比.
球内切于正方体,球的直径等于正方体的棱长;正方体内接于球,球的半径等于正方体棱长的 倍(即球体对角钱的一半);棱长为 的正四面体的内切球的半径为 ,外接球半径为 .
也可以用微积分来求,不过不好写
球的体积公式
球的体积:4/3πR^3
推导过程:拿纸笔画好图
步:先想象一个半球(高R,底面半径R,这个应该能理解吧),在距它底面L处,做一个横截面。因为是半圆,所以底面圆心到球面任意点的距离相等,所以截面半径r的平方:r^2= R^2 - L^2(初中学的勾股定理)
所以截面面积S=π(R^2 - L^2)
=πR^2 - πL^2
第二步:再想象一个圆柱(高R,底面半径R),从中间拿掉一个圆锥,在同样高L处,做横截面。截面为圆环,S圆环面积=大圆 - 小圆
因为此圆柱高R,半径R所以从垂直方向截面上看,截去的圆锥为等腰直角三角形,所以L等于圆环中小圆的半径,所以S圆环面积=大圆 - 小圆
=πR^2 - πL^2
所以 在同样高处 圆柱的圆环=半球的横截圆
所以可以得 圆柱截取圆锥后的剩余体积=半球体积
得半球体积=2/3圆柱
所以球的体积=4/3圆柱
=4/3πR^3
球的体积公式的推导过程
如果你学过微积分,那么球的体积可以通过二重积分或三重积分来做。
如果没有学过,那么中学里面有一个祖亘(音,那个字打不出来,是祖冲之的儿子)原理:如果两个立体的所有的平行截面的面积均相等,则二者体积相等。
做法如下:
将半球作为一个立体,
以球的半径为底面半径,以球的半径为高的圆柱体,中间挖去一个同样的底和高的圆锥体。将这个立体作为第二个立体,。
可以证明上述两个立体的水平截面的面积均相等,
于是半球的体积为 PiR^2R-1/3PiR^2R=2/3PiR^3
由此可得球的体积公式4/3PiR^3
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。