扇形统计图教学反思 扇形统计图说课稿人教版
大家好我是欣欣,扇形统计图教学反思,关于扇形统计图说课稿人教版很多人还不知道,那么现在让我们一起来看看吧!
扇形统计图教学反思 扇形统计图说课稿人教版
扇形统计图教学反思 扇形统计图说课稿人教版
1、4、通过系列的学习与研究,使自己成为一位“志存高远、爱岗敬业、为人师表、教书育人、与时俱进”的新型教师。
2、古典概率通常又叫事前概率,是指当随机中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。
3、下面由我精心整理的古典概率教学设计,希望可以帮到你哦!古典概率教学设计 篇1一、教材分析:《古典概型的特征和概率计算公式》是北师大版普通高中课程标准试验教科书数学必修3第三章第二节小节的内容。
4、本节课内容是在学生已经学习了随机概率的概念基础上的延续和拓展。
5、古典概型是一种特殊的数学模型,它的引入避免了大量的重复试验,而且得到的是概率的值。
6、它也为后面学习几何概型在思路上做了一个铺垫,在教材中起着承前启后的作用。
7、同时,学习本节课的内容,能够大大激发学生学习数学、应用数学的兴趣。
8、因此本节知识在概率论中占有相当重要的地位。
9、由于在这节课之前,教材中并没有安排排列组合知识,所以这节课的重点我认为不是“如何计算”,而是让学生通过生活中的实例与数学模型,来理解古典概型的两个特征,让学生初步学会把一些实际问题转化为古典概型;能运用公式求一些简单的古典概型概率二、教学目标:1.知识与技能(1)理解古典概型的特征;(2)通过实例归纳出古典概型概率计算公式;(3)能运用公式求一些简单的古典概型概率。
10、2.过程与方法根据本节课的内容和学生的实际水平,通过对两个问题的研究让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比试验,归纳总结出古典概型的概率计算公式,体现了有特殊到一般的数学思想,掌握列表法,和树状图法两种列举方法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
11、3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
12、适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
13、使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度。
14、三、重点、难点重点:理解古典概型的两个特征;归纳出古典概型概率计算公式。
15、难点:简单应用古典概型概率计算公式。
16、四、教学过程(一)复习回顾,引入课题:通过上节课做大量的重复试验,得出随机概率的方法存在的不足:费时,费力;并且得到的概率是一个估计值,引出有必要寻找另外一种计算随机概率的方法:古典概型的特征和概率计算公式。
17、(二)探究新知:问题1:(1)、掷一枚质地均匀的硬,可能出现的结果有几个?每个结果出现的概率是多少?通过什么方法得到的?(2)、掷一枚质地均匀的,向上的点数可能有几种?每个结果出现的概率是多少?通过什么方法得到的?对以上问题如何从理论上进行说明?设计目的:首先让学生体会到概率计算问题在理论与实践上是相统一的,然后让学生通过对上述问题的结论进行交流探讨,得出他们的共同特征——即古典概型的特征。
18、让学生体会有特殊到一般的数学思想,并使学生在亲身体会古典概型的同时感受与他人合作的重要性,得出基本的概念。
19、思考交流:1、问题一中各自的基本是什么?2、射击运动员向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……命中1环和命中0环(即不命中),你认为这是古典概型吗?为什么?3、向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,你认为是古典概型吗?为什么?设计目的:让学生交流讨论得出结论,一方面让学生感受到与他人合作的重要性,另一方面让学生对古典概型的特征和基本作进一步的加深巩固,其次得出古典概型必须同时满足有限等可能两个条件,否则它就不是古典概型。
20、问题2:掷一粒均匀的,计算下列的概率:(1)向上的点数为偶数的概率;(2)向上的点数为奇数的概率;设计目的:通过对问题的分析,然后让学生观察各概率分子分母的特征,归纳出古典概型概率计算公式,让学生体会古典概型概率计算公式的生成过程。
21、(三)例题解析:例1:同时掷两粒均匀的,计算:(1)一共有多少种可能的结果?(2)向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?设计目的:通过该题让学生总结出列举所有可能结果的方法,及各个列举方法如何应用,在哪些情况下应用哪些方法,并初步体会运用古典概型概率计算公式的步骤。
本文到这结束,希望上面文章对大家有所帮助。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。