初中数学教学阐释模板 初中数学教学分析范例
精选初中数学说课稿5篇
【 #教案# 导语】“说课”是教学改革中涌现出来的新生事物,是进行教学研究、教学交流和教学探讨的一种新的教学研究形式,也是集体备课的进一步发展,而说课稿则是为进行说课准备的文稿,它不同于教案,教案只说“怎样教”,说课稿则重点说清“为什么要这样教”。以下是 为大家整理的内容,欢迎阅读参考。
初中数学教学阐释模板 初中数学教学分析范例
初中数学教学阐释模板 初中数学教学分析范例
1.精选初中数学说课稿
一、教材分析
(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。
(二)课时安排:
两课时。本节课是课时,第二课时是梯形的判定及应用
(三)教学目标
1、知识与技能目标:
掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。
2、过程与方法目标:
⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;
⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、
3、情感、态度与价值观目标:
让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;
(四)教学重点、难点:
本节课的教学重点分成三个层次:
1、掌握梯形的定义,认识梯形的其他相关概念;
2、熟练应用等腰梯形的性质;
3、通过实际作研究梯形的基本辅助线作法。
本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:
二、教学方法:
根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。
三、学习方法:
初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法、正如波利亚所说的:“学习任何知识的途径,都是自己去发现。”
四、教具、学具准备:
多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸
五、教学程序:
共有六步
(一)情境引发
(二)活动探索、研究发现
(三)深化建构
(四)迁移运用
(五)系统概括
(六)布置作业,拓展思维
这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说。
在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在作中发现,在作中探究,在作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”
在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。
由学生完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程、并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。
设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题、顺利的突破了本节课的难点
在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:
1、平行四边形和梯形的区别和联系;
2、我看等腰梯形的特殊性;
3、解决梯形的常用方法。
以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。
在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的
1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:
(1)等腰梯形
(2)直角梯形(要求:所拼成的图形互不重叠且不留空隙)
2、发挥想象,以梯形为基础图案设计通钢三中第xx届运动会的会徽
我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔、
六、有四点说明:
1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。
2、时间的大体安排:情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。
3、教学反思需要课后填写4、整个设计要突出体现的特色:让学生动手作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”。
七、教学预测:
本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。
2.精选初中数学说课稿
一、教材分析:
(一)教材的地位及作用:
梯形是人们为熟悉的几何图形之一,在生活中有着极为广泛的应用。在小学阶段学生对梯形已经有了初步的认识、本节课再次将学生带入梯形的殿堂,进一步探究梯形的相关概念、等腰梯形的性质以及解决梯形问题的策略,是四边形知识螺旋发展的一个重要环节、
(二)教学目标;
根据教材的地位及作用,考虑到学生已有的认知结构心理特征,我将本节课的教学目标确定为:
1、知识与技能目标:
(1)掌握梯形的相关概念,了解等腰梯形同一底上的两个内角相等,两条对角线相等的性质。
(2)培养学生初步应用等腰梯形的性质解决问题的能力。
2、过程与方法目标:
(1)使学生经历探究梯形相关的概念,等腰梯形性质的过程。
(2)在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略。
3、情感、态度与价值观目标:
(1)在简单的作活动中,发展学生的说理意识和主动探究的习惯,同时培养学生的合作意识和交流能力。
(2)体会探索发现的乐趣,增强学习数学的自信心。
(三)教学重点、难点:
本着课程标准,在钻研教材的基础上,我确定:
1、本节课的教学重点是:探索等腰梯形的性质并能运用它解决一些简单的问题。
2、教学难点:梯形有关计算和推理中的常用策略、
二、教法分析:
针对本节课的特点,采用“创设情境—动手作—合作交流—知识运用”为主线的教学方法。
三、学法指导:
《数学课程标准纲要》指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式、为了充分体现《新课标》的要求,本节课采用“动手实践,合作探究”的学习方法。使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,体验探索的快乐,使学生的主体地位得到充分的发挥、
四、教学过程:
(一)创设情境,导入课题。
让学生拿出准备好的平行四边形纸片和剪刀,只剪一刀,保证留下的纸片是是四边形,那么留下的四边形是什么图形?学生动手作,我参与到学生活动中,及时搜集学生可能出现的情况。
学生容易发现,当所剪的边与相对的边平行时,得到的是平行四边形,那么不平行时,得到的是什么图形呢?由此导入课题。
设计意图:从学生刚刚研究过的的平行四边形入手,让学生既复习运用了平行四边形的相关知识,又有利于加强对比,渡到梯形的研究。
(二)动手作,合作探究。
探究一、梯形的相关概念。
由剪纸的体验,学生很容易概括出梯形的定义,进一步学生认识梯形的相关概念。强调:上下底的区分是根据长度,而不是根据其位置。
紧接着让学生举出生活中梯形的实例,学生的举例可能会拘泥于校园,教室,家里的物品,这时我利用课件向学生展示墨西哥的金字塔,2010年上海世博会会馆的的,让学生发现中的梯形,感受梯形的美。接着,利用多媒体展示一组,让学生进一步感受生活中的梯形。设计意图:让学生学会用数学的眼光看世界,体会数学与现实生活的联系、为了加深学生学生对梯形高的意义的理解,我设计了“画一画”:在一张有平行线条的纸上作一个梯形ABCD,使AD∥BC,并作出它的一条高。
待学生画好后,分别指出梯形的上底、下底和高。设计意图:让学生体会梯形高的作法,理解梯形高的意义以及梯形的高有无数条。学生知道了什么是梯形,那么梯形与平行四边形有什么异同?学生小组讨论交流后汇报,借助课件的动画效果加以强调。并进一步提出以下问题:
1、梯形是平行四边形吗
2、一组对边平行这组对边不相等的四边形是梯形吗?
设计意图:通过讨论使学生认识到,平行四边形和梯形属于四边形的两个不同分支,探究二、特殊梯形
为得到等腰梯形、直角梯形的定义,我设计了下面的活动:剪一剪:如图,把一张矩形纸片对折后,用剪刀沿斜线剪开,然后将其展开,可得到一个什么图形?
让学生从学具中拿出矩形纸片,按大屏幕的要求完成剪纸,并向大家展示,所得到的是什么图形?剪下的是什么图形?这时我鼓励学生由剪纸过程说说什么样的梯形是等腰梯形,什么样的梯形是直角梯形,结合课件的动画效果给出等腰梯形和直角梯形的定义。
(三)总结反思,纳入系统。
1、通过本节课的学习你得到了哪些新知识?
2、解答关于等腰梯形的问题后,你获得了哪些方法?设计意图:这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识。
(四)布置作业,拓展思维。
学生经过以上四个环节的学习,已经初步掌握了等腰梯形的性质,但学生的能力有待进一步提升,因此作业布置为:
1、基础性作业:课本121面习题4、8节1、2、3题。
2、拓展性作业:在下图所给的平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:
(1)等腰梯形。
(2)直角梯形。
要求:所拼成的图形互不重叠且不留空隙。设计意图:进一步培养学生动手作能力及分析问题解决问题的能力,让学生更好的会学数学,用数学的理念。同时为下节课的学习埋下伏笔。
五、教学评价。
本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”。
3.精选初中数学说课稿
大家好!很高兴有这样一个机会与大家一起学习、交流,希望大家多多指教!我说课的课题是“合并同类项”,下面进行简单的说课:
一、教材与学情分析:
本节课选自湘教版《数学》七年级上册§2.4节,是学生进入初中阶段,在引入用字母表示数,学习了代数式、多项式以及有理数运算的基础上,对同类项进行合并的探索、研究。合并同类项是本章的一个重点,其法则的应用是一次式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算律的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
七年级的学生具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。所授班级中,已初步形成合作交流、勇于探索的学习风气。
基与上面对教材与学情的分析,结合《新课标》的要求,我确定以下教学目标、教学重点和难点:
教学目标:
知识目标:
1、了解同类项、多项式相等的概念。
2、掌握合并同类项的法则。
能力目标:
1、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。
2、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
情感目标:
1、通过设置具体的问题情境,以小组为单位开展探究、交流等活动,让学生感受合作的愉快与收获。
2、实施开放性教学,让学生获得成功的体验。
3、通过设置不同层次的问题,使不同程度的学生得到不同的发展。
教学重点: 同类项的概念、合并同类项的法则及应用。
教学难点: 正确判断同类项;准确合并同类项。
二、设计思路:
1、 采用“问题情境---建立模型---解释、应用与拓展”的模式展开教学。让学生经历同类项概念和合并同类项法则的形成与应用过程,从而更好地理解知识,掌握其思想方法和应用技能。
2、 学生主动地从事观察、猜想、推理、论证、交流与反思等数学活动;鼓励学生自主探索与合作交流,使学生主动地获取知识,积累数学活动经验,学会探索、学会学习。
3、 关注学生的情感与态度,实施开放性教学,让学生获得成功的体验。
三、 教学方法、手段与教学程序:
为了达到教学目标,实现我的设计效果,我采用、探究法为主的教学法,应用多媒体课件运用CAI辅助教学。设计以下主要教学流程:
1)创设五个步步深入的问题情境:目的在于引发学生学习的积极性,启发学生的探索欲 望,同时为本课学习做好准备和铺垫。
2)问题探讨:让学生通过自主探索与合作交流认识同类项,了解数学分类的思想;获得合并同类项的法则,体验探求规律的思想方法。同时让学生体验合作的愉快与收获。感受成功的喜悦。
3)火眼金睛与看谁做的又快又准:让学生加深对同类项的认识,加强对合并同类项法则的理解。
4)例题讲解与巩固练习:让学生掌握在多项式中判断出同类项和运用法则进行合并同类项运算的技能,使学生的知识、技能螺旋式上升。
5)课堂小结:通过学生的自我反思,将知识条理化、系统化。
6)拓展延伸与挑战自我:激发学生的学习热情,为他们提供更广泛的发展空间。
我的教学目的能不能实现,设计效果能不能达到,就只能看我接下来上课的情况了!我的说课就简单说到这里,谢谢大家!
4.精选初中数学说课稿
一、教材分析
(一)地位、作用
本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。
(二)教学目标
根据学生已经有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:
1、知识与技能
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等的性质”。
(3)理解对顶角相等的说理过程。
2、过程与方法
经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力。
3、情感态度和价值观
通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
(三)重点,难点
根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:
重点:邻补角和对顶角的概念及对顶角相等的性质。
难点:写出规范的推理过程和对对顶角相等的探索。
二、教学方法
在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。
三、学法指导
5.精选初中数学说课稿
今天我说课的题目是 ,这节课所选用的教材为北师大版义务教育课程标准八年级教科书。
一、 教材分析
1、教材的地位和作用
本节教材是初中数学____ 年级 册的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等。
知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但是对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:
二、 教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1、知识与技能目标:
2、过程与方法目标:
3、情感态度与价值目标:
三、 教学方法分析
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程当中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
为了有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于学生顺利地进入学习情境。
(2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲 望。
通过情境创设,学生已激发了强烈的求知欲 望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3) 发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、思考、小组交流 等活动,学生归纳。
(4) 分析思考,加深理解
设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过了前面的学习,学生已经基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。
(5) 强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6) 小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而且应该是优化认知结构,完善知识体系的一种有效手段,为了充分发挥学生的主体地位,让学生畅谈本节课的收获。
(7)当堂检测 对比反馈
(8) 布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解 ! 谢谢。
2022初中上学期数学教案设计模板
2022初中上学期数学教案设计模板5篇(通用版)
作为一名的教育工作者,有必要进行细致的教学设计准备工作,教学设计是实现教学目标的性和决策性活动。下面是我精心整理的2022初中上学期数学教案设计模板5篇(通用版),希望对大家有所帮助。
2022初中上学期数学教案设计模板篇1
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y=tx
k可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中__(1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y=(2)xy=10(3)y=k-1x(4)y=-
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
kx?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
2022初中上学期数学教案设计模板篇2
为了提高学生的学习兴趣,增大学生的学习参与面,减小距。努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下:
一、教学目标:
通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。
二、教材分析
本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:
第十六章分式本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
第十七章反比例函数函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。
第十八章勾股定理直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第十九章四边形四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是空间与图形领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。
第二十章数据的分析本章主要研究平均数、中位数、众数以及极、方等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方估计总体的平均数和方,进一步体会用样本估计总体的思想。
三、提高学科教育质量的主要措施:
1、认真做好教学七认真工作。把教学七认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、学生积极参与知识的构建,营造、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。学生写复习提纲,使知识来源于学生的构造。
4、学生积极归纳解题规律,学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的'状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、指导成立课外兴趣小组的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于、中、好三类学生,课堂上的提问要照顾好、中、三类学生,使他们都等到发展。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对生,一些关键知识,辅导生过关,为生以后的发展铺平道路。
10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。
2022初中上学期数学教案设计模板篇3
随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。
1教学目标的制定
制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。
2教法学法的制定
制定教法学法应结合各层次学生的具体情况而定,如对A层学生少讲多练,注重培养其自学能力;对B层学生,则实行精讲精练,注重课本上的例题和习题的处理;对C层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。
3教学重难点的制定
教学重难点的制定也应结合各层次学生的具体情况而定。
4教学过程的设计
4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。
4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。
4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的B层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。
5练习与作业的设计
教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使A层学生有练习的机会,B、C两层学生也有充分发展的余地。
分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。
2022初中上学期数学教案设计模板篇4
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
2022初中上学期数学教案设计模板篇5
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题.
2.使学生理解公式与代数式的关系.
(二)能力训练点
1.利用数学公式解决实际问题的能力.
2.利用已知的公式推导新公式的能力.
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践.
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.
二、学法
1.数学方法:发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式.
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
初中数学设计教案模板范文
任课教师课前会根据教学方向和内容,包括学生的学习进程情况,做好教案准备,以便教学工作的正常开展。根据教案将课堂的几十分钟高效率的运用起来,实现高效课堂。下面是由我为大家整理的“初中数学设计教案模板范文”,仅供参考,欢迎大家阅读。
初中数学设计教案模板范文(一)
一、教学目标
(一)认知目标:
1.了解二元一次方程组的概念。
2.理解二元一次方程组的解的概念。
3.会用列表尝试的方法找二元一次方程组的解。
(二)能力目标:
1.渗透把实际问题抽象成数学模型的思想。
2.通过尝试求解,培养学生的探索能力。
(三)情感目标:
1.培养学生细致,认真的学习习惯。
2.在积极的教学评价中,促进师生的情感交流。
二、教学
1.二元一次方程组及其解的概念。
2.用列表尝试的方法求出方程组的解。
三、教学过程
(一)创设情景,引入课题:
1.本班共有40人,请问能确定男女各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比女生多了2人。设男生x人,女生y人,方程如何表示?x,y的值是多少?
3.本班男生比女生多2人且男生共40人,设该班男生x人,女生y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
(二)探究新知,练习巩固:
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出由教师板书。
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3,
y+z=5,x=y+10,
2y+1=5,4x-y2=2。
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=?
y=0;y=2;y=1;y=?
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2。
(3)既满足个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,尝试求解:
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。 (2)用列表尝试的方法解出这个方程组的解。
由学生完成,并分析讲解。
(四)课堂小结,布置作业:
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
初中数学设计教案模板范文(二)
一、教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
二、重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
三、教学过程
(一)复习提问
一本笔记本1.2元。小红有6元钱,那么她多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得1.2x=6。
因为1.2×5=6,所以小红能买到5本笔记本。
(二)新授
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)。
列方程:设需要租用x辆客车,可得。
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)。
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
四、巩固练习
教科书习题
五、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
初中数学设计教案模板范文(三)
一、教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
二、教学建议
(一)教学重点、难点
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
(二)重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
(三)知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
三、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
初中数学设计教案模板范文(四)
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题。
2.使学生理解公式与代数式的关系。
(二)能力训练点
1.利用数学公式解决实际问题的能力。
2.利用已知的公式推导新公式的能力。
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践。
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。
二、学法
1.数学方法:发现法,以复习提问小学里学过的公式为基础、突破难点。
2.学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式。
2.难点:同重点。
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或。
四、课时安排
一课时。
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。
2022初中数学教案设计模板
为了顺利的开展教学工作,老师们在上课前通常会准备教案,那么初中数学的教案该怎么写呢?下面是由我为大家整理的“2022初中数学教案设计模板”,仅供参考,欢迎大家阅读。
2022初中数学教案设计模板(一)
一、 教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
二、重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
三、 教学过程
1、复习提问
一本笔记本1.2元。小红有6元钱,那么她多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得1.2x=6;
因为1.2×5=6,所以小红能买到5本笔记本。
2、新授
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得:
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
3、巩固练习
教科书第3页练习1、2。
4、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
5、作业
教科书第3页,习题6.1第1、3题。
2022初中数学教案设计模板(二)
一、教学目标:
1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:
重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:
1、一次函数与正比例函数的定义:
一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:
(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:
1、写出一个图象经过点(1,— 3)的函数解析式为:
2、直线y=—2X—2不经过第 象限,y随x的增大而:
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:
5、过点(0,2)且与直线y=3x平行的直线是:
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为 。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
(2)求直线AC的解析式。
2022初中数学教案设计模板(三)
一、教材内容
xx出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标
1.学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
三、教学重、难点
认识负数的意义。
四、教学过程
(一)谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和现象中都存在着相反的情况,请看屏幕:(课件播放。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
(二)教学新知
1.表示相反意义的量
(1)引入实例
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
(3)展示交流
2.认识正、负数
(1)引入正、负数
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
①同桌交流。
②全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:……)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.练一练
读一读,填一填。
5.出示课题
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
2022初中数学教案设计模板(四)
一、教学目标:
1、理解二元一次方程及二元一次方程的解的概念;
2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4、在解决问题的过程中,渗透类比的思想方法,并渗透进教育。
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
四、教学过程:
1、情景导入:
链接:x70岁以上老人可领取生活补助。
得到方程:80a+150b=902880、
2、新课教学:
学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:
(2)课本P80练习2、判定哪些式子是二元一次方程方程。
合作学习:
活动背景爱心满人间——记求是中学“关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的'一对未知数的值叫做二元一次方程的一个解。
并提出注意二元一次方程解的书写方法。
3、合作学习:
给定方程x+2y=8,男同学给出y(x取小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的快准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y为简便?
出示例题:已知二元一次方程x+2y=8。
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4、课堂练习:
(1)已知:5xm—2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;
5、你能解决吗?
小红到邮局给远在农村的寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。
6、课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
7、布置作业:
略。
2022初中数学教案设计模板(五)
教学目标:
1、了解公式的意义,使学生能用公式解决简单的实际问题;
2、初步培养学生观察、分析及概括的能力;
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议:
一、教学重点、难点
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例:
一、教学目标
(一)知识教学点
1、使学生能利用公式解决简单的实际问题。
2、使学生理解公式与代数式的关系。
(二)能力训练点
1、利用数学公式解决实际问题的能力。
2、利用已知的公式推导新公式的能力。
(三)教育渗透点
数学来源于生产实践,又反过来服务于生产实践。
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。
二、学法
1、数学方法:发现法,以复习提问小学里学过的公式为基础、突破难点。
2、学生学法:观察→分析→推导→计算。
三、重点、难点、疑点及解决办法
1、重点:利用旧公式推导出新的图形的计算公式。
2、难点:同重点。
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或。
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)解释三角形,梯形面积公式。
【教法说明】让学生感知用割补法求图形的面积。
初中数学课程教学范文模板
初中数学老师要认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。以下是我整理的初中数学课程教学,希望可以提供给大家进行参考和借鉴。
初中数学课程教学范文一
一、教材分析
第十一章全等三角形本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。教学难点:领会证明的分析思路、学会运用综合法证明的格式。教学关键提示:突出全等三角形的判定。
第十二章轴对称本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。教学关键提示:突出分析问题的思维方式。
第十三章实数本章通过对平方根、立方根的探究引出无限不循环小数,进而导出无理数的概念,从而把有理数扩展到实数。教学重点:平方根、立方根、无理数和实数的有关概念与性质。教学难点:平方根及其性质;有理数、无理数的区别。教学关键提示:从生活实际入手,让学生经历无理数的发现过程,从而理解并掌握实数的有关概念与性质。
第十四章一次函数本章主要学习函数及其三种表达方式,学习正比例函数、一次函数的概念、图象、性质和应用,并从函数的观点出发再次认识一元一次方程、一元一次不等式及二元一次方程组。教学重点:理解正比例函数、一次函数的概念、图象和性质。教学难点:培养学生初步形成数形结合的思维模式。教学关键提示:应用变化与对应的思想分析函数问题,建立运用函数的数学模型。
第十五章整式的乘除与因式分解本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。教学关键提示:学生运用类比的思想理解因式分解,并理解因式分解与整式乘法的互逆性。
二、学生情况分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特,问题较。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。上学年学生期末考试的成绩平均分为116分,不及格的学生7人。总体来看,成绩还算不错。七年级尚未出现两极分化,绝大多数学生都在认真学习。本学期还要在学生学习习惯的养成上,在学生学习主动性上下大功夫。
三、教学目标
1、知识与技能目标学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。
2、过程与方法目标掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。
3、情感与态度目标通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。
四、教学设想
1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。
2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。
3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。
4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于的问题重新进行定位,制定并实施补救方案。
5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。
6、成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。
7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。
五、提高教学质量的措施
1、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。
4、不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。
5、教学中注重自主学习、合作学习、探究学习。
6.经常听取学生良好的合理化建议。
7.以“两头”带“中间”战略思想不变。深化两极生的训导。
初中数学课程教学范文二
一、指导思想
认真贯彻落实学校教务处工作,以新课标为指导,以教法探索为重点,以构建“自主学习”课堂教学模式为主题,提高课堂效率,提高教学质量为目的,深化课堂教学改革,努力改善教与学的方式,使我校的数学教学教研质量进一步提高。
二、工作目标
1、 狠抓教学常规,更新教学观念,提高本组教师的教育教学能力;
2、初步构建“自主学习”课堂教学模式,努力改善教与学的方式;
3、抓好培优补工作,促进学生成绩全面提高;
4、配合学校教务处提高教学教研。
三、重点及重要措施
1、加强组风建设,增强本组教师的协作意识和团体凝聚力;
2、增强教师的感和使命感,严格执行学校教务处的各项教育教学;
3、用新课标的理念来转变和更新教学理念,指导平时的教学工作,提高课堂教学的效率;
4、积极实行启发式和讨论式教学,培养学生自主学习的习惯,激发学生思考和创新意识,努力提高教学质量,废除“满堂灌”,构建充满生命活力“主动发展型”新模式,还学生主体参与的权力;
5、树立学生是学习的主人,教师是学生学习的组织者、者、合作者的思想观念,以平等宽容的态度对待学生,努力构建和谐课堂;
6、在教学中注重基础知识和基本技能的同时,注重基本技能和基本态度的培养,加强课程与学生生活实际的联系;
7、逐步培养本组教师运用多媒体教学的能力,逐步实现信息技术与学科教学的结合;
8、认真落实常规管理,在落实教务处各项常规要求的同时,组织本组教师积极参与教学教研,本期继续实行推磨听课,要求每位教学教师主讲一节公开课,相互学习,取长补短,同时配合教务处开展好说课活动,以促进本组教师教学水平迅速提高;
9、抓好数学教学情况的质量检测工作,认真组织月考统一命题,统一测试。为激发学生学习数学的兴趣,培养学生的创新意思和创新能力,本期安排一次数学竞赛;
10、组织本组教师加强教育教学业务学习,尽可能按照学校教务处的要求撰写教育教学心得体会与工作总结,以提高自己的业务素质和水平。
初中数学课程教学范文三
一、教学思想:
深入推进和贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题转化为数学问题并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展,工作《初中数学教学》。
二、教学目标:
1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
2、知识与技能:掌握初中数学教材、数学学科“基本要求”的知识点。
3、过程与方法:通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生 、
三、教学措施
1、认真学习钻研新课标,掌握教材,编写好“教案”。
2、认真备课,争取充分掌握学生动态。
认真钻研大纲和教材,做好初中各阶段的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以不为提高自己的教学理论水平和教学实践能力。
3、认真上好每一堂课。
创设教学情境,激发学习兴趣,充分用足用好40分钟。爱因斯曾经说过:“兴趣是的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
4、落实每一堂课后辅助,查漏补缺。
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使生也能及时扫除学习障碍,增强学习信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
5、积极与其它老师沟通,加强教研教改,提高教学水平。
6、经常听取学生良好的合理化建议。
7、深化两极生的训导。
8、落实帮教措施。
总之通过做好教学工作的每一环节,尽的努力,想出各种有效的办法,以提高教学质量。
初中数学教案模板范文
教案是教师对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面我整理了初中数学教案模板范文,仅供参考。
初中二元一次方程数学教案
一.教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二.教学重难点
重点:二元一次方程组及其解的概念。
难点:用列表尝试的方法求出方程组的解。
三.教学过程
(一)创设情景,引入课题
1.本班共有40人,请问能确定男各几人吗?为什么?
(1)如果设本班男生x人,y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比多了2人。设男生x人,y人.方程如何表示?x,y的值是多少?
3.本班男生比多2人且男共40人.设该班男生x人,y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出由教师板书。
[让学生看书,引起他们对教材重视。找,加深他们对概念的了解.]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=?
y=0;y=2;y=1;y=?
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解.
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验.]
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生完成,并分析讲解。
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
一元一次不等式组教案模板
一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:
(1)组成不等式组的不等式必须是一元一次不等式;
(2)从数量上看,不等式的个数必须是两个或两个以上;
(3)每个不等式在不等式组中的位置并不固定,它们是并列的.
二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:
(1)先分别求出不等式组中各个不等式的解集;
(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.
三.不等式(组)的解集的数轴表示:
一元一次不等式组知识点
1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;
2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;
3.我们根据一元一次不等式组,化简成简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。
说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。
四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。
【一元一次不等式组考点分析】
(1)考查不等式组的概念;
(2)考查一元一次不等式组的解集,以及在数轴上的表示;
(3)考查不等式组的特解问题;
(4)确定字母的取值。
【一元一次不等式组知识点误区】
(1)思维误区,不等式与等式混淆;
(2)不能正确地确定出不等式组解集的公共部分;
(3)在数轴上表示不等式组解集时,混淆界点的表示方法;
(4)考虑不周,漏掉隐含条件;
(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;
(6)对含字母的不等式,没有对字母取值进行分类讨论。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。