滚动直线导轨原理_滚动直线导轨原理图
V型导向滚轮导轨的原理是什么?
V型滚轮在V型导轨面上滚动,V型导轨面经过淬硬和磨削处理,以保证强度和传动精度的滚动,可以达到很高的线速度,可达8m/s。
滚动直线导轨原理_滚动直线导轨原理图
滚动直线导轨原理_滚动直线导轨原理图
滚动直线导轨原理_滚动直线导轨原理图
V型导向滚轮导轨的原理:
滚轮的滚动体-轴承中的钢球或圆锥滚子和导轨不直接接触,很好地防止了导轨上的污染物接触到滚动体,同时轴承具有良好的密封性能,防止空气中的污染物进入并接触到滚动体。
V型滚轮和V型导轨的接触属于线接触,这根线和滚轮的中心轴线斜交,绕着中心轴线高速转动;这根线和V型导轨面的接触属于瞬时接触,高速接近导轨面,瞬时接触,再高速离开;这样的话,就通过V型滚轮的“线”不停地对导轨面进行“刮擦”,可以很好地保证导轨面的清洁。
直线导轨有什么组成,作用是什么?
直线导轨主要有滑块和导轨组成,滑块主要应用于滑动摩擦导轨。直线导轨又称线轨、滑轨、线性导轨、线性滑轨,用于直线往复运动场合,且可以承担一定的扭矩,可在高负载的情况下实现高精度的直线运动。在大陆称直线导轨,一般称线性导轨,线性滑轨。
直线导轨运动的作用是用来支撑和运动部件,按给定的方向做往复直线运动。依擦性质而定,直线运动导轨可以分为滑动摩擦导轨、滚动摩擦导轨、弹性摩擦导轨、流体摩擦导轨等种类。直线轴承主要用在自动化机械上比较多,像德国进口的机床,折弯机,激光焊接机等等,当然直线轴承和直线轴是配套用的。像直线导轨主要是用在精度要求比较高的机械结构上,直线导轨的移动元件和固定元件之间不用中间介质,而用滚动钢球。
直线导轨是怎么分类的
滚动直线导轨副以滑块和导轨间的滚动代替相对接触滑动。滚动直线导轨副按滚动体的形状可分为滚珠式、滚柱式和滚针式三种。
1、滚珠式
滚道包括滑块滚道、导轨滚道,以滚珠作为滚动体,滚珠与滚道的接触为点接触。滚珠式导轨副的灵敏度好,定位精度高,但承载能力和刚度较小,需要通过预紧来提高刚度,适用于非高刚性的数控机床。
2、滚柱式
相比于滚珠导轨副,滚珠式导轨副以滚柱作为滚动体,滚柱与滚道的接触为线接触。滚柱在承受高负荷时,会形成极微小的弹性变形,而承载力及刚度会更大。主要应用于加工中心、NC复合加工机床、磨床、龙门式加工中心等大、重型机床,特别适合超高刚性、高精度、超重负荷等机床使用。
3、滚针式
滚针导轨的特点是尺寸小,结构紧凑,为了提高工作台的移动精度,尺寸会按照直径进行分组,滚针导轨适用于导轨尺寸受限制的机床。
凯特精机
直线导轨的性能特点有哪些?
1、摩擦特性
滚动直线导轨副在摩擦特性方面具有突出的优点, 其摩擦阻力比滑动导轨小得多, 一般摩擦因数μ =0. 002 ~0. 004, 为滑动导轨的1/50 左右, 起动摩擦和动摩擦接近相等。在速度变化时, μ 值稳定, 运动轻快、灵活、平稳, 因而可实现高速运动, 提高了生产效率。
2、运动特性
由于滚动直线导轨副的摩擦极小, 因此在起动时无颤动, 低速下运动无爬行现象。当施加预加载荷后, 可以消除间隙, 提高刚性。此外, 具有自动调心、补偿安装基面误的功能, 故其整体运动精度高, 因此适用于高精度、高性能的机械产品。另外, 由于滚动直线导轨副具有很好的误均化功能, 因此也称之为“魔法导轨”、“神器导轨”。滚动直线导轨的运动借助钢球或滚柱滚动实现, 导轨副摩擦阻力小, 动、静摩擦力之很小, 随动性极好,低速时不易产生爬行, 即驱动信号与机械动作滞后的时间间隔极短, 有益于提高数控系统的响应速度和灵敏度, 能实现高定位精度。滚动直线导轨副作为具有高定位精度的滚动功能部件, 适合作频繁起动或换向的运动部件, 可将机床定位精度设定到超微米级。与此同时可根据需要, 适当增加导轨副预载荷, 确保钢球或滚柱不发生滑动, 实现平稳运动, 减小了运动的冲击和振动。滚动直线导轨副也适应高速直线运动, 其瞬时速度比滑动导轨提高约10 倍。
3、寿命性
在滑动导轨中, 大部分能量以磨损能形式而消耗掉, 因而磨损快, 难以长期维持高精度。相反, 滚动导轨副摩擦小, 磨损少, 可以长期保持高精度。另外, 由于滚动导轨副中采用多个滚动体作为支撑, 同时滚道能较容易地获得很高的加工精度及较高的表面硬度, 因此滚动直线导轨副具有较长的工作寿命。对于滑动导轨面的流体润滑, 由于油膜的浮动, 产生的运动精度误是无法避免的。在绝大多数情况下, 流体润滑只限于边界区域, 由金属接触而产生的直接摩擦是无法避免的, 在这种摩擦中, 大量的能量以摩擦损耗被浪费掉了。与之相反, 滚动接触由于摩擦耗能少, 滚动面的摩擦损耗也相应减少, 故能使滚动直线导轨系统长期保持高精度状态。同时, 由于使用润滑油也很少, 这使得在机床的润滑系统设计及使用维护方面都变得非常容易。
4、承载特性
滚动直线导轨副具有较好的承载性能, 可以承受不同方向的力和力矩载荷, 如承受上下、左右方向的力, 以及俯仰力矩、偏摆力矩和旋转力矩, 因此, 具有很好的载荷适应性。在设计制造时施加适当的预加载荷可以增加阻尼, 提高抗振性, 同时可以消除高频振动现象。而滑动导轨在平行接触面方向可承受的侧向负荷较小, 易造成机床运行精度不良。
5、驱动特性
驱动功率大幅度下降, 只相当于普通机械的1/10。采用滚动直线导轨的机床由于摩擦阻力小, 可使所需的动力源及动力传递机构小型化, 使驱动转矩大大减少, 使机床所需电力降低80%, 节能效果明显。可实现机床的高速运动, 机床效率可提高20% ~30%。
6、互换特性
简化了机械结构的设计和制造。成对使用导轨副时, 具有“误均化效应”, 从而降低基础件(导轨安装面) 的加工精度要求, 降低基础件的机械制造成本与加工难度。传统的滑动导轨必须对导轨面进行刮研, 既费事又费时, 且一旦机床精度不良, 必须再刮研。滚动导轨具有互换性, 只要更换滑块或导轨或整个滚动导轨副, 机床即可重新获得高精度。
7、经济特性
滚动直线导轨副因其摩擦阻力小、磨损少, 润滑、维修和保养方便, 故维修成本低廉。此外, 滚动直线导轨副还具有很好的互换性, 易形成标准化、系列化, 并由专业厂商成批生产, 使用户选用十分方便, 从而缩短了设计工时。另外, 节能省油是滚动直线导轨副的又一显著特点。日本THK 公司曾对使用滑动导轨的单轴平面磨床和使用滚动导轨的三轴平面磨床进行对比性能测试, 结果是使用滑动导轨的功耗为滚动导轨副的16. 7 倍。鉴于滚动直线导轨副具有众多的突出优点, 因而在机械工业中得到广泛应用, 各种数控机床、精密工作台、工业机器人、医疗器械、检测仪器、轻工机械以及运动机械中都有体现。
直线运动导轨的作用是用来支撑和运动部件,按给定的方向做往复直线运动。依擦性质而定,直线运动导轨可以分为滑动摩擦导轨、滚动摩擦导轨、弹性摩擦导轨、流体摩擦导轨等种类。直线轴承主要用在自动化机械上比较多,像德国进口的机床,折弯机,激光焊接机等等,当然直线轴承和直线轴是配套用的.像直线导轨主要是用在精度要求比较高的机械结构上!
直线导轨特点
(1) 具有互换性
由于对生产制造精度严格管控,直线导轨尺寸能维持在一定的水准内,且滑块有保持器的设计以防止钢珠脱落,因此部份系列精度具可互换性,客户可依需要订购导轨或滑块,亦可分开储存导轨及滑块,以减少储存空间。
(2) 自动调心能力
来自圆弧沟槽的DF(45-°45)°组合,在安装的时候,藉由钢珠的弹性变形及接触点的转移,即使安装面多少有些偏,也能被线轨滑块内部吸收,产生自动调心能力之效果而而得到高精度稳定的平滑运动。
(3) 所有方向皆具有高刚性
运用四列式圆弧沟槽,配合四列钢珠等45度之接触角度,让钢珠达到理想的两点接触构造,能承受来自上下和左右方向的负荷;在必要时更可施加预压以提高刚性。
直线导轨可以理解为是一种滚动导引,是由钢珠在滑块跟导轨之间无限滚动循环,从而使负载平台沿着导轨轻易的高精度线性运动,并将摩擦系数降至平常传统滑动导引的五十分之一,能轻易地达到很高的定位精度。滑块跟导轨间末制单元设计,使线形导轨同时承受上下左右等各方向的负荷,专利的回流系统及精简化的结构设计让HIWIN的线性导轨有更平顺且低噪音的运动。
什么是滚动导轨 ?
直线导轨一般为二种,一种是滚动式,一种是滑动式,
滚动直线滑轨是一种滚动导引,它由钢珠在滑块与滑轨之间作无限滚动循环,使得负载平台能沿着滑轨轻易的以高精度作线性运动,其摩擦系数可降至传统滑动导引的1/50,使之能轻易地达到μm级的定位精度。现在滑块与滑轨间的末制单元设计,使得线形滑轨可同时承受上下左右等各方向的负荷,专利的回流系统及精简化的结构设计使线性滑轨有更平顺且低噪音的运动。
滚动导轨是直线导轨的一种。直线导轨一般为二种,一种是滚动式,一种是滑动式,滚动直线滑轨是一种滚动导引,它由钢珠在滑块与滑轨之间作无限滚动循环,使得负载平台能沿着滑轨轻易的以高精度作线性运动,其摩擦系数可降至传统滑动导引的1/50,使之能轻易地达到μm级的定位精度。
滚动导轨现在滑块与滑轨间的末制单元设计,使得线形滑轨可同时承受上下左右等各方向的负荷,专利的回流系统及精简化的结构设计使线性滑轨有更平顺且低噪音的运动。
优点:
1、灵敏度高,且其动摩擦与静摩擦系数相甚微,因而运动平稳,低速移动时不易出现爬行现象。
2、定位精度高,重复定位精度可达0.2μm。
3、摩擦阻力小,移动轻便,磨损小、精度保持性好。
缺点:滚动导轨的抗震性较,对防护要求较高。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。