高中数学:三点共线公式、向量平行公式和证明公式
三点共线公式和向量平行公式和证明线段垂直公式?
a=(xa,ya) b=(xb,yb) c=(xc,yc)
高中数学:三点共线公式、向量平行公式和证明公式
高中数学:三点共线公式、向量平行公式和证明公式
共线: (xb-xa,yb-ya)=k(xc-xb,yc-yb)
向量a=(x1,y1),向量b=(x2,y2)
平行:x1y2-x2y1=0 其实就是x1:x2=y1:y2
垂直:x1x2+y1y2=0 其实就是y1:x1=-y2:x1(斜率的积为-1)
向量三点共线可以得出什么公式?
A(x1,y1),B(x2,y2),C(x3,y3)
向量AB=(x2-x1,y2-y1),向量AC=(x3-x1,y3-y1)
A、B、C共线得: 向量AB//向量AC
(x2-x1)(y3-y1)=(x3-x1)(y2-y1)
所以A、B、C共线:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)
三点共线向量公式是什么?
三点共线是指三点在同一条直线上,三点共线向量公式是:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。 扩展资料 三点共线是指三点在同一条直线上,三点共线向量公式是:(x2-x1)(y3-y1)=(x3-x1)(y2-y1),而证明三点共线的方法是取两点确立一条直线,计算该直线的解析式,代入第三点坐标看是否满足该解析式(直线与方程)。
平面向量三点共线公式
平面向量三点共线公式是(x2-x1)(y3-y1)=(x3-x1)(y2-y1),三点共线,数学中的一种术语,属几何类问题,指的是三点在同一条直线上。
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
三点共线在向量中有公式么可以详细一点么,数
A(x1,y1),B(x2,y2),C(x3,y3)
向量AB=(x2-x1,y2-y1),向量AC=(x3-x1,y3-y1)
A、B、C共线得: 向量AB//向量AC
(x2-x1)(y3-y1)=(x3-x1)(y2-y1)
所以A、B、C共线:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)
三点共线定理是什么?
三点共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。
证明过程:AC=OC-OA=λOA+μOB-OA=μOB+(λ-1)OA=μ(OB-OA)。而AB=OB-OA,即AB=μAC,故A、B、C三点共线。
三点共线的证明方法:
1、取两点确立一条直线,计算该直线的解析式。代入第三点坐标看是否满足该解析式(直线与方程)。
2、设三点为A、B、C ,利用向量证明:λAB=AC(其中λ为非零实数)。
3、利用点法求出AB斜率和AC斜率,相等即三点共线。
4、用梅涅劳斯定理。
5、利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线”,可知:如果三点同属于两个相交的平面则三点共线。
6、运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”,其实就是同一法。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。