2022海淀高三期中数学 海淀初三一模2022数学试卷
2022高考数学难吗
2022高考数学难。
2022海淀高三期中数学 海淀初三一模2022数学试卷
2022海淀高三期中数学 海淀初三一模2022数学试卷
2022海淀高三期中数学 海淀初三一模2022数学试卷
2022海淀高三期中数学 海淀初三一模2022数学试卷
6月7日下午,高考数学考试结束后,有媒体称,考生被数学“难哭了”。考生出考场以后,大呼试题给出的条件让人有点“摸不到头脑”,“感觉我们遇上近几年最难的高考数学题!”“的大题一道没看懂”。
今年高考数学到底难不难,专家们认为,今年高考数学试题整体上保稳定,细微处见变化。相比于去年,数学试题在试卷结构、考试内容和难度上保持一致。
试题突出对理性思维和关键能力的考查,通过设计真实问题情境,关注我国科学防疫的成果,体现数学文化,贯彻全面育人的要求。试题考查了考生获取新知识的能力和对新概念、新问题的理解探究能力,体现了对数学阅读与理解能力的考查。
2022年高考数学试题及参
相比很多同学在高考过后的时间就是找核对,虽然知道这样可能会影响心情,但还是忍不住想要对照。下面是我为大家整理的关于2022年高考数学试题及参,如果喜欢可以分享给身边的朋友喔!
2022年高考数学试题
2022年高考数学试题参
高考数学答题策略
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和 方法 、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
2022年高考数学试题及参相关 文章 :
★ 2022数学高考题及(新高考2卷)
★ 2022新高考数学Ⅰ卷试卷及参
★ 2022年全国Ⅰ卷高考数学试题及参公布
★ 2022全国一卷高考数学试题及
★ 2022新高考全国一卷数学试卷及解析
★ 2022年高考数学试题及(新高考二卷)
★ 2022全国新高考Ⅰ卷数学卷完整试题及一览
★ 2022新高考全国一卷数学试卷解析
★ 2022年高考数学全国乙卷(理科)试题(预测)
★ 2022新高考数学试题及详解
2022海淀区高三二模数学难度
题主是否想询问“2022海淀区高三二模数学难度是什么”?山东高考难度。海淀区隶属于市,辖下的学校在高三学生正式高考前会进行三轮模拟考试,一模数学的难度为高考难度,二模数学的难度较大,是山东高考难度,三模数学的难度为高考难度。海淀区高校云集,名胜古迹众多,有大学、清华大学、大学、师范大学等高校,颐和园、圆明园、香山等风景名胜都位于海淀区。
海淀二模排名
海淀二模排名如下:
1.海淀高三二模语文五分段排名:考试人数12893,平均分99.36。
2.海淀高三二模数学五分段排名:考试人数12884,平均分100.63。
3.海淀高三二模英语五分段排名:考试人数12831,平均分107.18。
4.海淀高三二模物理五分段排名:考试人数8413,平均分60.51。
5.海淀高三二模化学五分段排名:考试人数6894,平均分58.93。
资料扩展:
海淀区,隶属于市,位于市主城区西部和西北部,东与西城区、朝阳区相邻,南与丰台区毗连,西与石景山区、门头沟区交界,北与昌平区接壤,
介于北纬39°53′—40°09′,东经116°03′—116°23′之间,总面积431平方千米。截至2022年10月,海淀区下辖22个街道,7个地区。截至2022年末,海淀区常住人口312.4万人。
海淀区大地构造上处于阴山东西复杂构造带南缘、祁吕一贺兰山字形构造东翼反射弧与新华夏构造带交接部位,西部山区为西山隆起带,东部平原为平原沉降带,地质构造发育、构造形迹复杂,岩浆活动频繁。
海淀地区除缺失太古界、震旦亚界、上奥陶统、志留系、泥盆系、下石炭统、白垩系地层外,其余从寒武系到第四系地层均有分布,岩性较齐全,沉积岩、岩浆岩、变质岩三大类均有出露。
海淀区地处暖温带半湿润半干旱大陆性季风气候区,四季分明。春季风大干旱多,夏季炎热雨集中,秋季风小光照足,冬季寒冷雨雪少。春、秋季节短,冬、夏季节长。
2022高考数学题及(2020高考数学题及解析)
2022年全国乙卷高考数学试题
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题,希望可以提供给大家进行参考和借鉴。
2022年全国乙卷高考数学试题
全面认识你自己
认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。
首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。
其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。
是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。
高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个的结合点,考生才能在自己的人生路上迈出正确、关键的一步。
与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。
此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。
在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。
考生个人特征情况
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、地位、稳定性等。在进行专业选择时,考生家庭中的成员就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
2022年全国乙卷高考数学试题相关文章:
★2022高考全国乙卷试题及
★2022高考理科数学乙卷试题解析
★2022年全国乙卷高考理科数学
★2022年全国乙卷文科数学卷真题公布
★2022年高考数学试题及
★2022年全国乙卷高考数及
★2022年全国理科数学卷试题及解析
★2022全国Ⅰ卷高考数学试题及参一览
★2022年英语全国乙卷试题及
★2022年高考乙卷数试卷
2022年全国新高考1卷数学试题及解析
数学科高考以我国的经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及解析。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学试题解析
高考数学复习主干知识点汇总:
因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
2022年全国新高考1卷数学试题及解析相关文章:
★2022高考甲卷数试卷及
★2022年新高考Ⅱ卷数试卷及
★2022高考全国甲卷数学试题及
★2022高考数学大题题型总结
★2022全国乙卷理科数及解析
★2022年全国乙卷高考数学试卷
★2022年新高考1卷语文真题及解析
★全国新高考一卷2022语文试题及一览
★2022江西高考文科数学试题及
★2022全国新高考II卷语文试题及解析
2022年全国新高考1卷数学试题及详解
高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及详解。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学详解
2022高考数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式
②根据具体问题中的数量关系列不等式并解决简单实际问题
③用数轴表示一元一次不等式的解集
考点一:与简易逻辑
部分一般以选择题出现,属容易题。重点考查间关系的理解和认识。近年的试题加强了对计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目.
一、排列
1定义
从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
排列数的公式:Amn=n
特例:当m=n时,Amn=n!=n×3×2×1
规定:0!=1
二、组合
1定义
从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM
2.排列与组合
Anm=n-=n!/!Ann=n!
Cnm=n!/!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法
插空法间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
把具体问题转化或归结为排列或组合问题;
通过分析确定运用分类计数原理还是分步计数原理;
分析题目条件,避免“选取”时重复和遗漏;
列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn
特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作→变形→判断符号。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。
数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。
1.在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力
2022年全国新高考1卷数学试题及详解相关文章:
★2022高考卷数及解析
★2022高考甲卷数试卷及
★2022卷高考文科数学试题及解析
★2022高考全国甲卷数学试题及
★2022年新高考Ⅱ卷数试卷及
★2022全国乙卷理科数及解析
★2022高考数学大题题型总结
★2022年高考全国一卷作文预测及范文
★2022年高考数学必考知识点总结最新
★2022年全国乙卷高考数学试卷
2022年高考数学试题及参
相比很多同学在高考过后的时间就是找核对,虽然知道这样可能会影响心情,但还是忍不住想要对照。下面是我为大家整理的关于2022年高考数学试题及参,如果喜欢可以分享给身边的朋友喔!
2022年高考数学试题
2022年高考数学试题参
高考数学答题策略
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
2022年高考数学试题及参相关文章:
★2022数学高考题及
★2022新高考数学Ⅰ卷试卷及参
★2022年全国Ⅰ卷高考数学试题及参公布
★2022全国一卷高考数学试题及
★2022新高考全国一卷数学试卷及解析
★2022年高考数学试题及
★2022全国新高考Ⅰ卷数学卷完整试题及一览
★2022新高考全国一卷数学试卷解析
★2022年高考数学全国乙卷试题
★2022新高考数学试题及详解
海淀高三2021期中考试数学难度
海淀高三2021期中考试数学难度比较低。
期中考试是为了检验学生半个学期所学的知识而进行的一次考试,有利于学生比较正式地检验自己平时的学习水平。
根据这个成绩,学生可以及时的调整学习心态和方法,更地进行下一阶段的学习,期中考试主要考察学生前半学期的学习成果。
相关信息介绍:
(1)倾听说明,填写卷头
答题之前,听监考老师讲注意事项,要先填好卷头,如姓名、考区、考号、学校等等,这些方面不要等到交卷之前再填。那时,时间已到,别人起身交卷,会使你也急于交卷而忘记填写。
(2)通读试卷,统观全局
开始答题前,要先数试卷的页数,看清试卷前面的说明及要求,随后冷静、迅速地认真通读一遍试卷,并注意检查背面有无试题。
(3)认真审题,明确要求
参加任何考试至关重要的一步是反复阅读考题要求,在答题之前认真审题。
2022-2023学年海淀区、朝阳区高三期中考试时间安排
马上就要到高中期中考试的时间了,海淀区和朝阳区的高三期中考试时间安排已经出来了,此次考试为首次全区统考,请各位考生做好考试准备。下面是我为大家准备的“2022-2023学年海淀区、朝阳区高三期中考试时间安排”,可供参考。
2022-2023学年海淀区、朝阳区高三期中考试时间安排
海淀区高三期中考试时间:
海淀区将于11月1日-11月3日举行期中考试,具体考试安排如下:
朝阳区高三期中考试时间:
朝阳区高三期中考试时间为10月31日-11月4日,具体的考试时间安排暂未发布。
高三期中考试备考:
(1)重视知识梳理
在考试前,同学们要注重各学科基础知识的梳理,注意对知识的归纳与总结,注意分析知识点横向与纵向的联系,形成系统的知识框架。
另外,要注重回归课本,将学过的基本概念、定义和公式进行梳理。
(2)重视整理错题
此外,错题本的整理工作也要及时跟上,在整理过程中,同学们应该写清错因分析,并进行反思。
只要同学们将错题的错因分析到位且反思到位,并培养在空闲时间或考前浏览错题本的习惯,同样的错误将很快被纠正。
(3)重视对月考试卷的总结
期中考前,同学们不要忽视对月考的总结反思,可以问问自己:月考时的时间分配是否合理?是否做到先易后难?是否做到不留“空白”?
另外,同学们可以回顾一下自己开学以来的学习状态,比如课堂听讲效果,作业完成情况等,以便找出月考中暴露出来的知识点漏洞和学习方法问题,在期中考试前,进行查缺补漏,攻克薄弱项。
2022高中学考知识点总结数学
想要学好数学,关键在于多练习,熟能生巧,做的题目多了,自然就有了经验,下面是由我为大家整理的“2022高中学考知识点总结数学”,仅供参考,欢迎大家阅读本文。
高中数学知识点
立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等。
表示:用各顶点字母,如五棱台
几何特征:
①上下底面是相似的平行多边形
②侧面是梯形
③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:
①底面是全等的圆;
②母线与轴平行;
③轴与底面圆的半径垂直;
④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:
①底面是一个圆;
②母线交于圆锥的顶点;
③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:
①上下底面是两个圆;
②侧面母线交于原圆锥的顶点;
③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:
①球的截面是圆;
②球面上任意一点到球心的距离等于半径。
2、 空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
数学知识点2
直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
数学知识点3
幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
数学知识点4
指数函数
(1)指数函数的定义域为所有实数的,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数。
奇偶性
定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
高中数学知识点总结及公式
1.的有关概念。
1)(集):某些指定的对象集在一起就成为一个(集).其中每一个对象叫元素。
注意:①与的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个)。
③具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件。
2)的表示方法:常用的有列举法、描述法和图文法。
3)的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)补集:CUA={x| x A但x∈U}
3.弄清与元素、与的关系,掌握有关的术语和符号。
4.有关子集的几个等价关系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质
①A∩A=A,A∩B=B∩A;②A∪A=A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的个数:设A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
拓展阅读:高中数学学习方法
1.首先就是要熟悉基本的解题步骤和方法,平时的练习和考试是一样的,要注意每个步骤,解题的过程是一个思维过程,注意了高度集中不要让自己的思维跑偏,而我们一般是沿着自己的思维,并且按照熟悉的步骤就可以很容易找到.
2.在拿到题时认真的审题,这点很重要,直接决定你答题的正确性和速度,如果你的知识具备了,题审错了,会让你走很多弯路,浪费很多时间,并且还会做错,得不偿失,所以审题时很重要,读懂每个已知的条件,分析问题和条件之间的联系,然后在进行思维运算,开始答题.
3.平时认真的做好归纳总结,这样讲题型分类,考试时会很容易。往往同类型题会有共同点甚至给你同样的思维,能够使你对解题方法进行很好的归纳总结,然后起到举一反三的效果,这样当你在看到相同类型的题时,可以大大的缩短答题的时间.
4.学会画图这点也很重要,人的大脑对图的记忆比文学好,所以学会利用已知条件来设场景,画出对应的图,这样非常有利于解题,而且正确率是比较高的,一般情况题都来源于生活中,来解决实际问题,这样也有助于你将课本知识和实际联系在一起
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。