大数据特征(4v特点)?

大数据特征的特征是指:一般认为,大数据主要具有以下4个方面的典型特征,即大量(Volume)、多样(Variety)、高速(Velocity)和价值(Value),即所谓的4V。其特点如下:

大数据的4v特征分别是 大数据中的4v特征大数据的4v特征分别是 大数据中的4v特征


大数据的4v特征分别是 大数据中的4v特征


大数据的4v特征分别是 大数据中的4v特征


1、Volume,大数据的特征首先就是数据规模大。随着互联网、物联网、移动互联技术的发展,人和事物的所有轨迹都可以被记录下来,数据呈现出爆发性增长。

2、Variety,数据来源的广泛性,决定了数据形式的多样性。大数据可以分为三类,一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;一是非结构化的数据,如视频、、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据间的因果关系弱。

3、Velocity,数据的增长速度和处理速度是大数据高速性的重要体现。与以往的报纸、书信等传统数据载体生产传播方式不同,在大数据时代,大数据的交换和传播主要是通过互联网和云计算等方式实现的,其生产和传播数据的速度是非常迅速的。另外,大数据还要求处理数据的响应速度要快。

4、大数据的核心特征是价值,其实价值密度的高低和数据总量的大小是成反比的,即数据价值密度越高数据总量越小,数据价值密度越低数据总量越大。任何有价值的信息的提取依托的就是海量的基础数据。当然目前大数据背景下有个未解决的问题,如何通过强大的机器算法更迅速地在海量数据中完成数据的价值提纯。

大数据应用实例:互联网是最早利用大数据进行精准营销的行业,通过大数据不仅可以为企业进行精准销,还可以快速友好地对用户实施个性化解决方案。医疗行业拥有大量的病例、病理报告、治愈方案、物报告等。如果这些数据可以被整理和应用将会极大地帮助医生和病人。

数据预处理所包含的方面

1、数据清洗:删除原始数据集中无关数据、重复数据、平滑噪声数据,处理缺失值、异常值等。

2、数据集成:将多个数据源合并存放在一个一致的数据存储中的过程。在数据集成时,来自多个数据源的现实世界实体的表达形式是不一样的,有可能不匹配,要考虑实体识别问题和属性冗余问题,从而将源数据在层上加以转换、提炼和集成。

3、数据变换: 主要是对数据进行规范化处理,将数据转换成适当的形式,以适用于挖掘任务以及算法的需要。

4、数据归约:在大数据集上进行复杂的数据分析和挖掘需要很长时间。数据规约产生更小但保持原数据完整性的新数据集。

大数据4v特征指的是“容量大Volume”“多样性Variety”“价值低Value”“速度快Velocity”。

一、Volume:数据量大,包括采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

二、Variety:种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。

大数据特征

个特征是数据类型繁多。包括网络日志、音频、视频、、地理位置信息等等多类型的数据对数据的处理能力提出了更高的要求 。

第二个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。

大数据的4V,就是“容量大Volume”“多样性Variety”“价值低Value”“速度快Velocity”

现在已经有5V了

一、Volume:数据量大,包括采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

二、Variety:种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。

三、Value:数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。

四、Velocity:数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的能够被用户查询到,个性化算法尽可能要求实时完成。这是大数据区别于传统数据挖掘的显著特征。

五、Veracity:数据的准确性和可信赖度,即数据的质量。

“大数据的4v特征主要包含规模性(Volume)、多样性(Variety)、高速性(Velocity)、价值性(Value)”

大数据是指规模巨大、复杂度高、处理速度快的数据。这些数据通常无法使用传统的数据处理方法和工具进行处理和分析。

大数据通常具有以下特点:

数据量巨大:大数据的大小通常超过传统数据处理工具所能处理的范围,可能达到数十TB、数百TB或甚至更大。

数据类型多样:大数据中的数据类型通常包括结构化数据、半结构化数据和非结构化数据,如文本、音频、视频等。

处理速度快:大数据的处理速度需要在实时或接近实时的时间内完成,这需要高效的数据处理和分析技术。

数据来源广泛:大数据的数据来源包括传感器、社交媒体、互联网、移动设备等多种渠道,数据形态也是多样的。

大数据的处理和分析需要使用大数据技术,包括分布式存储、分布式计算、机器学习、数据挖掘等技术。大数据可以用于各种领域,如金融、医疗、电商、物流等,为企业提供了更精准的决策和更高效的业务流程。

大数据4v特征指的是什么

大数据的4v特征分别是Volume(大量性)、Velocity(高速性)、Variety(多样性)、Value(价值性)。大数据特征的概念由维克托迈尔·舍恩伯格和肯尼斯克耶编写的《大数据时代》中提出。

截至目前,人类生产的所有印刷材料的数量是200PB,而历史上全人类总共说过得话的数据量大约是5EB。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。

Velocity(高速性):这是大数据区于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。

Variety(多样性):这种典型的多样性也让数据呗分为结构化数据和非结构化数据。相对于以往便储存的以数据库或文本为主的结构变化数据,非结构化数据越来越多,包括网络日志、音频、视频、、地理位置信息等。这些多类型的数据对数据的处理能力提出了更高要求。

Value(价值性):价值密度的高低与数据总量的大小成反比。如何快速对有价值数据“提纯”成为目前大数据背景下待解决的难题。

规模性、高速性、多样性、价值性。大数据的4v特征分别是:

1、规模性:随着信息化技术的高速发展,数据开始爆发性增长。

2、高速性。3、多样性:主要体现在数据来源多、数据类型多和数据之间关联性强。

4、价值性。