高中物理公式整理汇总

物理作为自然科学的带头学科,物理学研究一切物质基本的运动形式和规律,成为其他各自然科学学科的研究基础。下面的我给大家带来“高中物理公式整理汇总”,希望大家阅读收藏。

高中物理公式整理汇总(建议收藏)高中物理公式整理汇总(建议收藏)


高中物理公式整理汇总(建议收藏)


高中物理公式整理汇总(建议收藏)


高中物理公式整理汇总 一、变速运动

1) 匀变速直线运动

1.平均速度v平=s/t (定义式)

2.有用推论vt2 –v02=2as

3.中间时刻速度 vt/2=v平=(vt+v0)/2

4.末速度vt=v0+at

5.中间位置速度vs/2=√[(v02 +vt2)/2]

6.位移s= v平t=v0t + at2/2=vtt/2

7.加速度a=(vt-v0)/t

8.实验用推论Δs=aT2 (Δs为相邻等时间间隔(T)的位移之)

9.速度单位换算:1m/s=3.6km/h

2)自由落体运动

1.末速度vt=gt

2.位移公式h=gt2/2

3.下落时间t=√(2h/g)

4.推论vt2=2gh

注:重力加速度在赤道小,在高山处比平地小,方向竖直向下。

3)竖直上抛运动

1.位移公式s=v0t- gt2/2

2.末速度vt= v0- gt

3.有用推论vt2 –v02=-2gs

4.上升高度hmax=v02/2g (抛出点算起)

5.往返时间t=2v0/g (从抛出落回原位置的时间)

4)平抛运动

1.水平方向速度vx= v0

2.竖直方向速度vy=gt

3.水平方向位移sx= v0t

4.竖直方向位移sy=gt2/2

5.运动时间t=√(2sy/g) (通常又表示为√(2h/g))

6.合速度vt=√(vx2+vy2)=√[v02+(gt)2]

合速度方向与水平夹角β: tanβ=vy/vx=gt/v0

7.合位移s=√(sx2+ sy2)

位移方向与水平夹角α: tanα=sy/sx=v0gt/2

二、匀速圆周运动 万有引力定律

1)匀速圆周运动

1.周期与频率T=1/f

2.角速度ω=θ/t=2π/T=2πf

3.线速度v=s/t=2πR/T =2πRf=ωR

4.向心加速度an=v2/R=ω2R=4π2R/T2=4π2f2R

5.向心力Fn=mv2/R=mω2R=4mπ2R/T2=4mπ2f2R

2)万有引力定律

1.开普勒第三定律T2/R3=K(=4π2/GM)

2.万有引力定律F=Gm1m2/r2 G=6.67×10-11N·m2/kg2

3.天体上的重力、重力加速度GMm/R2=mg, g=GM/R2(R:天体半径)

4.卫星绕行速度、角速度、周期

v=√(GM/R), ω=√(GM/R3), T=2π√[R3/(GM)]

5.(二、三)宇宙速度v1=√(gr地)=7.9km/s(人造卫星的飞行速度和小发射速度),v2=11.2km/s, v3=16.7km/s

6.近地卫星v=√(gr地)

7.地球同步卫星GMm/(R+h)2=4mπ2(R+h)/T2

h≈3.6 km (距地球表面的高度)

注:地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。

8.双星

r1=M2R/(M1+M2), r2=M1R/(M1+M2) (r1+r2=R)

三、振动和波

1.简谐振动

条件F=-kx (物体所受回复力大小与其位移大小成正比,k称为回复力系数)

2.单摆

周期公式T=2π√(l/g) (单摆角度θ<5°)

3.机械波

波长、周期和波速的关系 λ=vT

四、机械能

1.功

(1)功的大小: W=Fscosθ

(2)总功的求法:

W总=W1+W2+W3……Wn

W总=F合scosθ

2.功率

(1) P=W/t 此公式求的是平均功率

(2)功率的另一个表达式: P=Fvcosθ 此公式即可求平均功率,也可求瞬时功率

1)平均功率: 当v为平均速度时

2)瞬时功率: 当v为t时刻的瞬时速度

(3)正常工作时: 实际功率≤额定功率

(4) 机车运动问题(前提:阻力f恒定)

P=Fv, F=ma+f (由牛顿第二定律得)

汽车启动有两种模式

1) 汽车以恒定功率启动 (a在减小,一直到0)

P恒定,v在增加,F在减小,有F=ma+f

当F减小=f时,v此时有值,vmax=P/f

2) 汽车以牵引力启动 (a开始恒定,再逐渐减小到0)

a恒定,F不变(F=ma+f),v在增加,P逐渐增加至额定功率

后P恒定,v在增加,F在减小,有F=ma+f

当F减小=f时,v此时有值,vmax=P/f

3.动能、动能定理

(1) 动能 Ek=mv2/2

(2) 动能定理W合=ΔEk=mv2/2-mv02/2

4.重力势能

(1)Ep=mgh

(2)WG=-ΔEp

5.弹性势能

(1)Ep=kx2/2

(2)W=-ΔEp

6.机械能守恒定律

只有保守力(重力、弹性力)做功的情况下,物体的动能和势能发生相互转化,但机械能保持不变

表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有保守力做功

五、气体

1.气体的状态参量

(1)温度(T): T=273+t

(2)体积

(3)压强: 1atm=76cmHg=1.013×105pa, 1cmHg=133a

2.玻意耳定律

p1V1=p2V2, pV=const

3.查理定律

(1)p1/T1=p2/T2, p/T=const

(2)查理定律的摄氏温标表述

pt=p0(1+t/273) (pt为t℃时的气体压强, p0为0℃时的气体压强)

(3)推论

Δp/Δt=Δp/ΔT=p/T=const

4.盖·吕萨克定律

(1)V1/T1=V2/T2, V/T=const

(2)盖·吕萨克定律的摄氏温标表述

Vt=V0(1+t/273) (Vt为t℃时的气体体积, V0为0℃时的气体体积)

(3)推论

ΔV/Δt=ΔV/ΔT=V/T=const

5.理想气体状态方程

(1)p1V1/T1=p2V2/T2, pV/T=const

(2)克拉珀龙方程: pV=(m/μ)RT

R是普适气体常量, R=p0V0/T0=8.31J/(mol·k)

(3)克拉珀龙方程也可表示为p=nkT

n是单位体积中的分子数, k是玻耳兹曼常量, k=1.38×10-23J/K

求高一物理公式 要公式和公式的字母代表什么还有公式的单位还有意义

高一物理公式总结

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as

3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t

7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之

9.主要物理量及单位:初速(Vo):m/s

加速度(a):m/s^2 末速度(Vt):m/s

时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2) 自由落体

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )

3.有用推论Vt^2 –Vo^2=-2gS 4.上升高度Hm=Vo^2/2g (抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动 万有引力

1)平抛运动

1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt

3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2

5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo

7.合位移S=(Sx^2+ Sy^2)1/2 ,

位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2R=m(2π/T)^2R

5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s

角速度(ω):rad/s 向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2

5.(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s

6.地球同步卫星GMm/(R+h)^2=m4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的环绕速度和小发射速度均为7.9Km/S。

机械能

1.功

(1)做功的两个条件: 作用在物体上的力.

物体在里的方向上通过的距离.

(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)

1J=1Nm

当 0<= a <派/2 w>0 F做正功 F是动力

当 a=派/2 w=0 (cos派/2=0) F不作功

当 派/2<= a <派 W<0 F做负功 F是阻力

(3)总功的求法:

W总=W1+W2+W3……Wn

W总=F合Scosa

2.功率

(1) 定义:功跟完成这些功所用时间的比值.

P=W/t 功率是标量 功率单位:瓦特(w)

此公式求的是平均功率

1w=1J/s 1000w=1kw

(2) 功率的另一个表达式: P=Fvcosa

当F与v方向相同时, P=Fv. (此时cos0度=1)

此公式即可求平均功率,也可求瞬时功率

1)平均功率: 当v为平均速度时

2)瞬时功率: 当v为t时刻的瞬时速度

(3) 额定功率: 指机器正常工作时输出功率

实际功率: 指机器在实际工作中的输出功率

正常工作时: 实际功率≤额定功率

(4) 机车运动问题(前提:阻力f恒定)

P=Fv F=ma+f (由牛顿第二定律得)

汽车启动有两种模式

1) 汽车以恒定功率启动 (a在减小,一直到0)

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有值

2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)

a恒定 F不变(F=ma+f) V在增加 P实逐渐增加

此时的P为额定功率 即P一定

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有值

3.功和能

(1) 功和能的关系: 做功的过程就是能量转化的过程

功是能量转化的量度

(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量

功是物体状态变化过程有关的物理量,即状态量

这是功和能的根本区别.

4.动能.动能定理

(1) 动能定义:物体由于运动而具有的能量. 用Ek表示

表达式 Ek=1/2mv^2 能是标量 也是过程量

单位:焦耳(J) 1kgm^2/s^2 = 1J

(2) 动能定理内容:合外力做的功等于物体动能的变化

表达式 W合=ΔEk=1/2mv^2-1/2mv0^2

适用范围:恒力做功,变力做功,分段做功,全程做功

5.重力势能

(1) 定义:物体由于被举高而具有的能量. 用Ep表示

表达式 Ep=mgh 是标量 单位:焦耳(J)

(2) 重力做功和重力势能的关系

W重=-ΔEp

重力势能的变化由重力做功来量度

(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关

重力势能是相对性的,和参考平面有关,一般以地面为参考平面

重力势能的变化是的,和参考平面无关

(4) 弹性势能:物体由于形变而具有的能量

弹性势能存在于发生弹性形变的物体中,跟形变的大小有关

弹性势能的变化由弹力做功来量度

6.机械能守恒定律

(1) 机械能:动能,重力势能,弹性势能的总称

总机械能:E=Ek+Ep 是标量 也具有相对性

机械能的变化,等于非重力做功 (比如阻力做的功)

ΔE=W非重

机械能之间可以相互转化

(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能

发生相互转化,但机械能保持不变

表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功

回答者: 煮酒弹剑爱老庄 - 高级 六级 1-28 20:51

高中物理公式,规律汇编表

一,力学

胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关)

重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力)

3 ,求F,的合力:利用平行四边形定则.

注意:(1) 力的合成和分解都均遵从平行四边行法则.

(2) 两个力的合力范围: F1-F2 F F1 + F2

(3) 合力大小可以大于分力,也可以小于分力,也可以等于分力.

4,两个平衡条件:

共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零.

F合=0 或 : Fx合=0 Fy合=0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点.

[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向

(2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解)

力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)

5,摩擦力的公式:

(1) 滑动摩擦力: f= FN

说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小,接触面相对运动快慢以及正压力N无关.

(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比.

大小范围: O f静 fm (fm为静摩擦力,与正压力有关)

说明:

a ,摩擦力可以与运动方向相同,也可以与运动方向相反.

b,摩擦力可以做正功,也可以做负功,还可以不做功.

c,摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反.

d,静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用.

6, 浮力: F= gV (注意单位)

7, 万有引力: F=G

适用条件:两质点间的引力(或可以看作质点,如两个均匀球体).

G为万有引力恒量,由卡文迪许用扭秤装置首先测量出.

在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度)

a ,万有引力=向心力

Gb,在地球表面附近,重力=万有引力

mg = G g = G

宇宙速度

mg = m V=

8, 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)

电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)

10,磁场力:

洛仑兹力:磁场对运动电荷的作用力.

公式:f=qVB (BV) 方向--左手定则

安培力 : 磁场对电流的作用力.

公式:F= BIL (BI) 方向--左手定则

11,牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay

适用范围:宏观,低速物体

理解:(1)矢量性 (2)瞬时性 (3)性

(4) 同体性 (5)同系性 (6)同单位制

12,匀变速直线运动:

基本规律: Vt = V0 + a t S = vo t +a t2

几个重要推论:

(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)

(2) A B段中间时刻的瞬时速度:

Vt/ 2 == (3) AB段位移中点的即时速度:

Vs/2 =

匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为12:22:32……n2; 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内,第2米内,第3米内……第n米内的时间之比为1:: ……(

初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间)

竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.

上升高度: H =

(2) 上升的时间: t=

(3) 上升,下落经过同一位置时的加速度相同,而速度等值反向

(4) 上升,下落经过同一段位移的时间相等. 从抛出到落回原位置的时间:t =

(5)适用全过程的公式: S = Vo t --g t2 Vt = Vo-g t

Vt2 -Vo2 = - 2 gS ( S,Vt的正,负号的理解)

14,匀速圆周运动公式

线速度: V= R =2f R=

角速度:=

向心加速度:a =2 f2 R

向心力: F= ma = m2 R= mm4n2 R

注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心.

(2)卫星绕地球,行星绕太阳作匀速圆周运动的向心力由万有引力提供.

氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供.

15,平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动

水平分运动: 水平位移: x= vo t 水平分速度:vx = vo

竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t

tg = Vy = Votg Vo =Vyctg

V = Vo = Vcos Vy = Vsin

在Vo,Vy,V,X,y,t,七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量.

16, 动量和冲量: 动量: P = mV 冲量:I = F t

(要注意矢量性)

17 ,动量定理: 物体所受合外力的冲量等于它的动量的变化.

公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键)

18,动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体)

公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O

适用条件:

(1)系统不受外力作用. (2)系统受外力作用,但合外力为零.

(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.

(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.

19, 功 : W = Fs cos (适用于恒力的功的计算)

理解正功,零功,负功

(2) 功是能量转化的量度

重力的功------量度------重力势能的变化

电场力的功-----量度------电势能的变化

分子力的功-----量度------分子势能的变化

合外力的功------量度-------动能的变化

20, 动能和势能: 动能: Ek =

重力势能:Ep = mgh (与零势能面的选择有关)

21,动能定理:外力所做的总功等于物体动能的变化(增量).

公式: W合= Ek = Ek2 - Ek1 = 22,机械能守恒定律:机械能 = 动能+重力势能+弹性势能

条件:系统只有内部的重力或弹力做功.

公式: mgh1 + 或者 Ep减 = Ek增

23,能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功.

E = Q = f S相

24,功率: P = (在t时间内力对物体做功的平均功率)

P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)

25, 简谐振动: 回复力: F = -KX 加速度:a = -

单摆周期公式: T= 2 (与摆球质量,振幅无关)

(了解)弹簧振子周期公式:T= 2 (与振子质量,弹簧劲度系数有关,与振幅无关)

26, 波长,波速,频率的关系: V == f (适用于一切波)

二,热学

1,热力学定律:U = Q + W

符号法则:外界对物体做功,W为"+".物体对外做功,W为"-";

物体从外界吸热,Q为"+";物体对外界放热,Q为"-".

物体内能增量U是取"+";物体内能减少,U取"-".

2 ,热力学第二定律:

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化.

表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化.

表述三:第二类永动机是不可能制成的.

3,理想气体状态方程:

(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化.

(2) 公式: 恒量

4,热力学温度:T = t + 273 单位:开(K)

(零度是低温的极限,不可能达到)

三,电磁学

(一)直流电路

1,电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)

2,电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)

3,电阻串联,并联:

串联:R=R1+R2+R3 +……+Rn

并联: 两个电阻并联: R=

4,欧姆定律:(1)部分电路欧姆定律: U=IR

(2)闭合电路欧姆定律:I =

路端电压: U = -I r= IR

电源输出功率: = Iε-Ir =

电源热功率:

电源效率: = =

(3)电功和电功率:

电功:W=IUt 电热:Q= 电功率 :P=IU

对于纯电阻电路: W=IUt= P=IU =

对于非纯电阻电路: W=Iut P=IU

(4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时:

电动势:ε=n 内阻:r=n

(二)电场

1,电场的力的性质:

电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)

点电荷电场的场强: E = (注意场强的矢量性)

2,电场的能的性质:

电势: U = (或 W = U q )

UAB = φA - φB

电场力做功与电势能变化的关系:U = - W

3,匀强电场中场强跟电势的关系: E = (d 为沿场强方向的距离)

4,带电粒子在电场中的运动:

? Uq =mv2

②偏转:运动分解: x= vo t ; vx = vo ; y =a t2 ; vy= a t

a =

(三)磁场

几种典型的磁场:通电直导线,通电螺线管,环形电流,地磁场的磁场分布.

磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)

磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)

带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动.即: qvB =

可得: r = , T = (确定圆心和半径是关键)

(四)电磁感应

1,感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律.

2,感应电动势的大小:① E = BLV (要求L垂直于B,V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)

(五)交变电流

1,交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势值:Em = nBSω .

2 ,正弦式交流的有效值:E = ;U = ; I =

(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)

3 ,电感和电容对交流的影响:

电感:通直流,阻交流;通低频,阻高频

电容:通交流,隔直流;通高频,阻低频

电阻:交,直流都能通过,且都有阻碍

4,变压器原理(理想变压器):

①电压: ② 功率:P1 = P2

③ 电流:如果只有一个副线圈 : ;

若有多个副线圈:n1I1= n2I2 + n3I3

电磁振荡(LC回路)的周期:T = 2π

四,光学

1,光的折射定律:n =

介质的折射率:n =

2,全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角. 临界角C: sin C =

3,双缝干涉的规律:

①路程ΔS = (n=0,1,2,3--) 明条纹

(2n+1) (n=0,1,2,3--) 暗条纹

相邻的两条明条纹(或暗条纹)间的距离:ΔX =

4,光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )

(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的初动能,W为金属的逸出功,与金属的种类有关)

5,物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)

五,原子和原子核

氢原子的能级结构.

原子在两个能级间跃迁时发射(或吸收光子):

hυ = E m - E n

核能:核反应过程中放出的能量.

质能方程: E = m C2 核反应释放核能:ΔE = Δm C2

复习建议:

1,高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中.

力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等.⑤⑥

解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型.解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律).后两种方法由于只要考虑初,末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的.

电磁学的重点是:①电场的性质;②电路的分析,设计与计算;③带电粒子在电场,磁场中的运动;④电磁感应现象中的力的问题,能量问题等等.

2,热学,光学,原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择,实验的形式出现.但不能认为这部分内容分数少而不重视,正因为内容少,规律少,这部分的得分率应该是很高的

位移公式s=1/2a(t的平方)。这个式子意义是初始速度为零,加速度为a的位移s.你还要其他的话加我8973231.

谁有高中物理公式大全?

高中物理公式大全可以得到这个在线的网站有很多的学习。有效的学习方法高中物理有很多,我认为有两个比较重要的。

1至物理过程进行分析的主题时,能够借鉴,学习物理不能分开的图形,使用机械知识机械设计主要是依靠电磁知识,复杂的电路设计,图形语言的使用上表示。知识条理化分析这些问题的解决方案等方面的问题,是非常重要的,正确的解决问题的。

图2是一个非常重要的角色,做实验。课堂实验通常是足够的,放学后使用的VCM仿真,做实验软件,许多学校为学生提供。通过反复实验,做的时候多观察,多接触,多思考,多总结,提高自己身体的感觉。

个人觉得花几块钱买个小本子的物理手册比较好,价格也不贵,看着也舒服。不管怎样,建议你去书店先看看。

高中物理所有公式及单位

①向心力公式:F=ma=mω^2r=mv^2/r=mvω=m(2π/T)^2r=m(2πf)^2r=m(2πn)^2r

②万有引力充当向心力求线速度:v=√(GM/r);

万有引力充当向心力求周期:T=2π√(r^3/GM)

③地面处黄金代换:GM=gr^2

④电场强度公式:

E=F/q(适用于一切);

E=U/d(适用于平行板电容器);

E=kQ/r^2(适用于真空中的点电荷)

⑤电势公式:

U=W/q(定义式,适用于一切);

U=Ed(适用于匀强电场);

U=ψA-ψB(适用于一切)

⑥电容公式:

C=Q/U(定义式,适用于一切);

C=ξrS/4πkd(适用于平行板电容器)

⑦安培力公式:F=BIL=B^2L^2v/R

洛仑兹力公式:F=qBv

⑨电动势:Em=nBSω;

平均电动势:E=nΔφ/Δt

高中物理公式总结归纳

高中物理属于理科,这门科目要记的公式也有很多。下面由我为你精心准备了“高中物理公式总结归纳”仅供参考,持续关注本站将可以持续获取更多的内容!

高中物理公式总结归纳

一、匀变速直线运动

1、平均速度V平=s/t(定义式)

2、有用推论Vt2-Vo2=2as

3、中间时刻速度Vt/2=V平=(Vt+Vo)/2

4、末速度Vt=Vo+at

5、中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

6、位移s=V平t=Vot+at2/2=Vt/2t

7、加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}。

8、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之}。

9、主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

二、自由落体运动

1、初速度Vo=0

2、末速度Vt=gt

3、下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

注:①自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

②a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

三、竖直上抛运动

1、位移s=Vot-gt2/2

2、末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3、有用推论Vt2-Vo2=-2gs

4、上升高度Hm=Vo2/2g(抛出点算起)

5、往返时间t=2Vo/g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

四、平抛运动

1、水平方向速度:Vx=Vo

2、竖直方向速度:Vy=gt

3、水平方向位移:x=Vot

4、竖直方向位移:y=gt2/2

5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

8、水平方向加速度:ax=0;竖直方向加速度:ay=g

五、常见的力

1、重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)。

2、胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}。

3、滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}。

4、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为静摩擦力)。

5、万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)。

6、静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)。

7、电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)。

8、安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)。

9、洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)。

六、动力学

1、牛顿运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}。

3、牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}。

4、共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}。

5、超重:FN>G,失重:FN

6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子 。

七、振动和振波

1、简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}。

2、单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}。

3、受迫振动频率特点:f=f驱动力

4、发生共振条件:f驱动力=f固,A=max,共振的防止和应用。

5、机械波、横波、纵波

6、滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}。

7、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为静摩擦力)。

8、万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)。

9、静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)。

10、电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)。

11、安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0。

12、洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)。

八、分子动理论、能量守恒定律

1、阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米。

2、油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}。

3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4、分子间的引力和斥力。

(1)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(小值)。

(2)r>r0,f引>f斥,F分子力表现为引力。

(3)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0。

5、热力学定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到类永动机不可造出。

6、热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性)。

7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}。

九、功和能

1、功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}。

2、重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度(hab=ha-hb)}。

3、电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势(V)即Uab=φa-φb}。

4、电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}。

5、功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}。

6、汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}。

7、汽车以恒定功率启动、以恒定加速度启动、汽车行驶速度(vmax=P额/f)。

8、电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}。

9、焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}。

10、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt。

拓展阅读:高中物理八大学习方法

一、高中物理学习方法

1、观察的几种方法

1.顺序观察法:按一定的顺序进行观察。

2.特征观察法:根据现象的特征进行观察。

3.对比观察法:对前后几次实验现象或实验数据的观察进行比较。

4.全面观察法:对现象进行全面的观察,了解观察对象的全貌。

2、过程的分析方法

1.化解过程层次:一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。因此,分析物理过程的基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。

2.探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键环节。

3.理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的“综合效应”。要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。

4.区分变化条件:物理现象都是在一定条件下发生发展的。条件变化了,物理过程也会随之而发生变化。在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。

3、因果分析法

1.分清因果地位:物理学中有许多物理量是通过比值来定义的。如R=U/R、E=F/q等。在这种定义方法中,物理量之间并非都互为比例关系的。但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。

2.注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。因果常是一一对应的,不能混淆。

3.循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。

4、原型启发法

原型启发就是通过与设的事物具有相似性的东西,来启发人们解决新问题的途径。能够起到启发作用的事物叫做原型。原型可来源于生活、生产和实验。如鱼的体型是创造船体的原型。原型启发能否实现取决于头脑中是否存在原型,原型又与头脑中的表象储备有关,增加原型主要有以下三种途径:1、注意观察生活中的各种现象,并争取用学到的知识予以初步解释;2、通过课外书、电视、科教电影的观看来得到;3、要重视实验。

5、概括法

概括是一种由个别到一般的认识方法。它的基本特点是从同类的个别对象中发现它们的共同性,由特定的、较小范围的认识扩展到更普遍性的,较大范围的认识。从心理学的角度来说,概括有两种不同的形式:一种是高级形式的、科学的概括,这种概括的结果得到的往往是概念,这种概括称为概念概括;另一种是初级形式的、经验的概括,又叫相似特征的概括。

相似特征概括是根据事物的外部特征对不同事物进行比较,舍弃它们不相同的特征,而对它们共同的特征加以概括,这是知觉表象阶段的概括,结果往往是感性的,是初级的。要转化为高级形式的概括,必须要在经验概括的基础上,对各种事物和现象作深入的分析、综合,从中抽象出事物和现象的本质属性,舍弃非本质的属性。

6、归纳法

归纳方法是经典物理研究及其理论建构中的一种重要方法。它要解决的主要任务是:由因导果或执果索因,理解事物和现象的因果联系,为认识物理规律作辅垫。第二透过现象抓本质,将一定的物理事实(现象、过程)归入某个范畴,并找到支配的规律性。完成这一归纳任务的方法是:在观察和实验的基础上,通过审慎地考察各种事例,并运用比较、分析、综合、抽象、概括以及探究因果关系等一系列逻辑方法,推出一般性猜想或说,然后再运用演绎对其进行修正和补充,直至后得到物理学的普遍性结论。比较法返回

比较的方法,是物理学研究中一种常用的思维方法,也是我们经常运用的一种基本的方法。这种方法的实质,就是辩析物理现象、概念、规律的同中之异,异中之同,以把握其本质属性。

7、类比法

类比是由一种物理现象,想象到另一种物理现象,并对两种物理现象进行比较,由已知物理现象的规律去推出另一种物理现象的规律,或解决另一种物理现象中的问题的思维方法,类比不但可以在物理知识系统内部进行,还可以将许多物理知识与其他知识如数学知识、化学知识、哲学知识、生活常识等进行类比,常能起到点化疑难、开拓思路的作用。

8、设推理法

设推理法是一种科学的思维方法,这就要求我们针对研究对象,根据物理过程,灵活运用规律,大胆设,突破思维方法上的局限性,使问题化繁为简,化难为易。

二、物理怎么能考80分

其实物理没基础不重要,重要是是要掌握思路,懂得学习方法,只有知道物理到底该怎么学以后才能真正提高分数,否则一味做题或者是看,根本就无济于事。物理是一门会了不难的学科,思路通了想不考高分都难。

学好物理首先是砸实每一个知识点,弄懂每一个物理过程,不要不懂装懂,更不能好像明白了就过去了,一定要弄懂了才可以,否则含糊做一百道题都不如真懂一道题效果好。做物理题一般都是有类型题的,哪类题目不会做,可以专攻那类题目,直至做会为止。

物理遇到不会的,就要多动脑思考,自己多琢磨,实在不会再去看或者问老师,这样记忆效果更深刻,而且对该类题目印象更深。物理要想学好,课本一定要熟,每个知识点都要牢记,例题都要好好做,这样很有帮助。