变上限积分求导?

变限积分求导公式如下:

高中数学:变上限积分求导?变限积分公式高中数学:变上限积分求导?变限积分公式


高中数学:变上限积分求导?变限积分公式


扩展资料:

积分

设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。

求导是数学计算中的一个计算方法,导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

数学中的名词,即对函数进行求导,用f'(x)表示。

设u=x-t 则t=x-u t的上下限为0---x,所以u的上下限为x----0 ,此时dt =d(x-u)= - du

x∫(0到x)f(x-t)dt =x∫(x到0)f(u)(- du)= - x∫(0到x)f(u)( - du)= x∫(0到x)f(u)du

下面求导数得:xf(x)+)+∫(0到x)f(u)du =xf(x)+)+∫(0到x)f(t)dt

变上限积分怎么求导?

[∫[0,x] f(t)dt]'=f(x),即:变动上限积分对变动上限的导数,等于将变动上限带入被积函数。例:

F(x)=∫[0,x] sint/t dt 尽管 sint/t 的原函数 F(x) 无法用初等函数表示,但F(x)的导数却可以根据【变动上限积分求导法则】算出:[F(x)]'=[∫[0,x] sint/t dt ]'=sinx/x。

一般形式的【变动上限积分求导法则】为:【∫[φ(x) ,ψ(x)] f(t)dt】' = f(φ(x))φ'(x)-f(ψ(x))ψ'(x)

设函数y=f(x) 在区间[a,b]上可积,对任意x∈[a,b],y=f(x)在[a,x] 上可积,且它的值与x构成一种对应关系(如概述中的所示),称Φ(x)为变上限的定积分函数。

积分上限函数的定积分:

设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。

在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

变上限积分求导法则

变上限积分求导如下:

当积分上限为被积函数的自变量时,变限积分在某一点的导数等于被积分函数在这一点的值,就是说积分这一点的增量为被积分函数在这一点的值乘以自变量增量区间大小,求导求出来的就是这一点的导数即为被积分函数在这一点的值。

自变量增量区间为某个函数时,此函数也需要进行求导方可平衡。

变上限积分求导公式:即∫f(t)dt(积分限a到x),根据映射的观点,每给一个x就积分出一个实数,因此这是关于x的一元函数,记为g(x)=∫f(t)dt(积分限a到x),注意积分变量用什么符号都不影响积分值,改用t是为了不与上限x混淆。

现在用导数定义求g'(x),根据定义,g'(x)=lim【∫f(t)dt-∫f(t)dt】/h(h趋于0,积分限前者为a到x+h,后者为a到x)=lim∫f(t)dt/h(积分限x到x+h,根据的是积分的区间可加性)。

根据积分中值定理,存在ξ属于(x,x+h),使得∫f(t)dt/h=f(ξ)h,又因为h趋于0时ξ是趋于x的,故极限=limf(ξ)h/h=f(x),至此证明了g'(x)=f(x)。

变上限积分求导法则

变上限积分求导计算公式:g'(x)=lim[∫f(t)dt-∫f(t)dt]/h。

1、积分变上限函数和积分变下限函数统称积分变限函数。φ(x)就表示从a到x00,f(t)所围成的面积。随着x的不断变化,φ的值是不断变化的,所以φ是x的函数,而t,只是随着x的变化,不断从a但x。由此看来,变量t的作用是避免混淆,其范围为a到x。

2、上式为积分变上限函数的表达式,当x与a位置互换后即为积分变下限函数的表达式。变上限积分的求导及拓展若(a,b)间是一个函数g(x)时,积分形式是∫ag(x)f(t)dt=f(g(x))g’(x)。

3、变限积分是由定积分来定义的;其次,这个函数的自变量出现在积分上限或积分下限。当f(x)在区间[a,b]上连续时,则f(t)dt,xE[a,b],是f(x)在区间[a,b]上的一个原函数2当f(x)在区间[a,b]上存在间断点,且其有原函数。

原函数存在定理

若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数。

如果上限x在区间[a,b]上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在[a,b]上定义了一个函数,这就是积分变限函数。

积分变限函数是一类重要的函数,它的应用是在牛顿一莱布尼兹公式的证明中.事实上,积分变限函数是产生新函数的重要工具,尤其是它能表示非初等函数,同时能将积分学问题转化为微分学问题。

积分变限函数除了能拓展我们对函数概念的理解外,在许多场合都有重要的应用。

变上限积分的求导公式

F(x)

=∫(a,x)

xf(t)

dt

F(x)

=x∫(a,x)

f(t)

dt

F'(x)

=∫(a,x)

f(t)

dt

+x

[x'

f(x)

-a'

f(a)]

=(1/x)F(x)

+x

[1

f(x)

-

f(a)],下限a的导数不就是0咯,所以整体都会变为0

=(1/x)F(x)

+xf(x)

变上限积分怎么求导?

变上限积分求导,不是牛顿-莱布尼兹公式。

首先你要知道求导公式:F(x)=∫(上限x,下限a)f(t)dt,则F'(x)=f(x),这个是基本公式

若F(x)=x∫(上限x,下限a)f(t)dt,则F(x)可以看作两个函数相乘,一个是x,另一个是∫(上限x,下限a)f(t)dt,因此F(x)求导的时候按照乘积求导的法则来求,记 ∫(上限x,下限a)f(t)dt=u(x)

F'(x)=(xu(x))'=(x)'u(x)+xu'(x)=u(x)+xu'(x)=∫(上限x,下限a)f(t)dt+xf(x)

结果有两项:前一项是x求导,u(x)不变,后一项是x不变,u(x)求导。