常用三角函数公式是什么?

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

常用三角函数公式如下:(^表示乘方,例如^2表示平方)。

sin函数公式_sin函数公式表sin函数公式_sin函数公式表


sin函数公式_sin函数公式表


tan(π+α)=tanα。

正弦函数sinθ=y/r。

余弦函数cosθ=x/r。

正切函数tanθ=y/x。

余切函数cotθ=x/y。

正割函数secθ=r/x。

余割函数cscθ=r/y。

三角函数公式继法:

1、“奇变偶不变,符号看象限”:

“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

2、符号判断口诀:

“ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。

以上内容参考:

直角三角形三角函数公式是什么?

cosα=cotαsinα

直角三角形三角函数如下:

正弦sin=对边比斜边。

余弦cos=邻边比斜边。

2、余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。

3、在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。

cos公式的其他资料:

它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1,余弦函数是偶函数,其图像关于y轴对称。

利用余弦定理,可以解决以下两类有关三角形的问题:

(1)已知三边tan(2α)=2tanα/[1-tan^2(α)],求三个角。

(2)已知两边和它们的夹角,求第三边和其他两个角。

三角函数公式有哪些啊?

sin(π + x) = -sin(x)

数学三角函数公式是如下:

cosα/sinα=cotα=cscα/secα

1、sin2α=2sinαcosα。

2、tan2α=2tanα/(1-tan^2(α))。

3、cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 。

4、sin^2(α/2)=(1-cosα)/2。

5、cos^2(α/2)=(1+cosα)/2。

6、tan^2(α/2)=(1-cosα)/(1+cosα)。

7、tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。

8、二倍角公式通过角α的三角函数值的一些变换关系来表示其二倍角2α的三角函数值,二倍角公式包括正弦二倍角公式、余弦二倍角公式以及正切二倍角公式。

三角函数的公式有哪些?

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]。

一、sin度数公式

“一全正;二正弦;三正切;四余弦”。这十二字口诀的意思就是说:象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

1、sin 30= 1/2

2、sin 45=根号2/2

3、sin 60= 根号3/2

二、cos度数公式

1、cos 30=根号3/2

2、cos 45=根号2/2

3、cos 60=1/2

1、tan 30=根号3/3

2、tan 45=1

3、tan 60=根号3

扩展资料:

1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。

2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。

5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。

6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。

参考资料:

三角函数变化公式

sin(π/2+α) = cosα;

三角函数变化公式如下:

sin(-α)= -sinα;

cos(-α) = cosα;

sin(π/2-α)= cosα;

cos(π/2-α) =sinα;

cos(π/2+α)= -sinα;

sin(π-α) =sinα;

cos(π-α) = -cosα;

sin(π+α)= -sinα;

cos(π+α) =-cosα;

tanA= sinA/cosA;

tan(π/2+α)=-cotα;

tan(π/2-α)=cotα;

tan(π-α)=-tanα;

扩展资料:

三角函数化简与求值时需要的知识储备:

①熟记特殊角的三角函数值;

②注意诱导公式的灵活运用;

③三角函数化简的要求是项数要最少,次数要,函数名最少,分母能最简,易求值。

诱导公式口诀“奇变偶不变,符号看象限”意义:

k×π/2±a(k∈z)的三角函数值。

(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;

(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角sin(a) = opite / hypotenuse函数值的符号。

三角函数公式sin,cos,tan有哪些?

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

三角函数公式初中sin、cos、tan有如下:

sinα=2tan(α/2)/[1+tan^2(α/2)]

1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等。

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系。

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

3、公式三:任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系。

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系。

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

三角恒等变换所有公式。

两角和与的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

sin(α+β)=sinα·cosβ+cosα·sinβ

sin(α-β)=sinα·cosβ-cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

二倍角公式:

sin(2α)=2sinα·cosα

三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

公式:

半角的正弦、余弦和正切公式(降幂扩角公式)

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

和化积3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-cos(2a)=(cosa)^2-(sina)^2β)/2]

两角和与的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

sin(α+β)=sinα·cosβ+cosα·sinβ

sin(α-β)=sinα·cosβ-cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

二倍角公式:

sin(2α)=2sinα·cosα

三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

公式:

半角的正弦、余弦和正切公式(降幂扩角公式)

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

和化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数极限公式大全

=1-cosθ

三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。下面是我整理的三角函数极限公式大全,供大家参考。

1.极限的概念

2.极限运算法则(设limf(x)=A,limg(x)=B)

3.几个常用极限(a>0,a不等于1)

4.求极限时常用到的三角函数公式

倒数关系:

sinα·cscα=1

cosα·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

2.1 基本关系:正弦和余弦函数之间存在着一种基本的转换关系,即sin(x) = cos(x - π/2)。这意味着正弦函数和余弦函数的图像可以通过平移或相位来相互转换。平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)公式

公式

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

三角函数的积化和公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

sin的化简怎么做?

半角公式:

sin化成cos的公式:sin(π/2+α)=cosα和sin(π/2-a)=cosa。

诱导公式口诀“奇变偶不变,符号看象限”。意义:形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90三角函数的和化积公式:°±α,则函数名称不变。

k×π/2±a(k∈z)的三角函数值,当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

补充公式:

cos(π/2+α)=-sinα;sin(π/2-α)=cosα;cos(π/2-α)=sinα。

正弦函数公式

cscα=secαcotα

sin(pi/2-a)=cosa;cos(pi/2-a)=sina(即:奇变偶不变,符号看象限)

1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。

sin(pi/2+a)=cosa;cos(pi/2+a)=-sina

sin(pi-a)=sina;cos(pi-a)=-cosa

sin(pi+a)=-sina;cos(pi+a)=-cosa

sin(i/2-a)=-cosa;cos(i/2-a)=-sina

sin(i/2+a)=-cosa;cos(i/2+a)=sina

sin(2pi+a)=sina;cos(2pi+a)=cosa

sin(2kpi+a)=sina;cos(2kpi+a)=cosa

(sina)^2+(cos)^2=1;

tana=sina/cosa

(前提:a不等于(pi/2)+2kpi)

sinA/a=sinB/b=sinC/c(正弦定理)

cosA=(b^2+c^2-a^2)/(2bc)(余弦定理)

sin(a+b)=sinaco+cosasinb;

sin(a-b)=sinaco-cosasinb;

cos(a+b)=cosaco-sinasinb;

cos(a-b)=cosaco+sinasinb;

sin(2a)=2sinaco;

其余的公式都是根据上述的公式变形得到的!