小升初数学知识点大

小升初数学如何攻克?以下就小升初数学几何部分的易错知识点进行简要梳理总结。希望对大家有所帮助啦~

小升初数学知识点归纳总结 小升初数学知识梳理小升初数学知识点归纳总结 小升初数学知识梳理


小升初数学知识点归纳总结 小升初数学知识梳理


(一)整数

1、整数的意义

自然数和0都是整数。

2、 自然数

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。0也是自然数。

3、计数单位

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、 数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依(大数—小数)÷“比”后的数存的。

因为35能被7整除,所以35是7的倍数,7是35的因数。

一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数字的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、10都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数

几个数公有的因数,叫做这几个数的公因数。其中的一个,叫做这几个数的公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的公因数。

公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数

1、小数的意义

把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的单位“一”之间的进率也是10。

2、小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如:0.25 、0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。例如:3.25 、5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7 、25.3 、0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 …… 3.1415926 ……

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 …… 0.0333 …… 12.1009 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。

纯循环小数:循环节从小数部分位开始的,叫做纯循环小数。例如:3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分位开始的,叫做混循环小数。3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个圆点。

(三)分数

1、分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2、分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于3、分数乘法:1。

分数:分子比分母大或者分子和分母相等的分数,叫做分数。分数大于或等于1。

带分数:分数可以写成整数与真分数合成的数,通常叫做带分数。

3、约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数

1 、表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

二、方法

(一)数的读法和写法

1、整数的读法:

从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2、整数的写法:

从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3、小数的读法:

读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4、小数的写法:

写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5、分数的读法:

读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6、分数的写法:

先写分数线,再写分母,写分子,按照整数的写法来写。

7、百分数的读法:

读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8、百分数的写法:

百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。

例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。

2、近似数:

根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015 省略亿后面的尾数是13 亿。

3、 四舍五入法:

要省略的尾数的位上的数是4 或者比4小,就把尾数去掉;如果尾数的位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

例如:省略345900 万后面的尾数约是35 万。省略4797420 亿后面的尾数约是47 亿。

4、大小比较

比较整数大小:

比较整数的大小,位数多的那个数就大,如果位数相同,就看位,位上的数大,那个数就大;位上的数相同,就看下一位,哪一位上的数大那个数就大。

比较小数的大小:

先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

比较分数的大小:

分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1、小数化成分数:

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2、分数化成小数:

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3、一个最简分数,如果分母中除了2和5以外,不含有其他的.质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4、小数化成百分数:

只要把小数点向右移动两位,同时在后面添上百分号。

5、百分数化成小数:

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6、分数化成百分数:

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7、百分数化成小数:

先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1、把一个合数分解质因数,通常用短除法。

2、求几个数的公因数的方法是:

先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的公因数。

3、求几个数的最小公倍数的方法是:

先用这几个数(或其中的部分数)的公因数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4、成为互质关系的两个数:

1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公因数只有1时,这两个合数互质。

(五)约分和通分

约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三、性质和规律

(一)商不变的规律

商不变的规律:

在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。

(二)小数的性质

小数的性质:

在小数的末尾添上零或者去掉零,小数的大小不变。

(三)小数点位置的移动引起小数大小的变化

1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……

3、小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质

分数的基本性质:

分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(五)分数与除法的关系

1、被除数÷除数= 被除数/除数

2、 因为零不能作除数,所以分数的分母不能为零。

3、被除数相当于分子,除数相当于分母。

四、运算的意义

(一)整数四则运算

1、整数加法:

把两个数合并成一个数的运算叫做加法。

在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

加数 加数=和一个加数=和-另一个加数

2、整数减法:

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做。被减数是总数,减数和分别是部分数。

加法和减法互为逆运算。

3、整数乘法:

求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

一个因数× 一个因数=积一个因数=积÷另一个因数

4 、整数除法:

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

乘法和除法互为逆运算。

在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

被除数÷除数=商除数=被除数÷商被除数=商×除数

(二)小数四则运算

1、小数加法:

小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

3、小数乘法:

小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

4、小数除法:

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

5、乘方:

求几个相同因数的积的运算叫做乘方。例如3 × 3 =32

(三)分数四则运算

1、分数加法:

分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

2、分数③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。减法:

分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

4、乘积是1的两个数叫做互为倒数。

5、分数除法:

分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。

小升初数学知识点

2、小数减法:

小升初数学知识点

先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

考试近在咫尺了,考生们是否已经准备好考试了呢?考试前的复习是很重要的哦,下面是我为大家准备的考试实用的知识点复习,希望能够帮助大家高效复习,这里先预祝考生们考试顺利。

一、数学知识点:方阵问题

1、概念和分类

学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵。

方阵包括实心方阵和空心方阵。如果方阵排满物体,叫做实心方阵;如果方阵的中间不排物体,叫做空心方阵。而实心方阵的每一层又可以单独看成一个空心方阵,因此空心方阵的规律对它也是适用的。

2、基本规律

(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2,

四周上的人数就少8。(可应用等数列相关知识进行解题)

(2)每层总数=[每边人(或物)数-1]×4

每边人(或物)数=每层总数÷4+1

(3)实心方阵

总人(或物)数=每边人(或物)数×每边人(或物)数

(4)空心方阵

总人(或物)数=(最外层每边人(或物)数-层数)×层数×4

总人(或物)数=(最外层人(或物)数+最内层人(或物)数)层数/2

最外层每边数=总人(或物)数÷4÷层数+层数

二、数学知识点:鸡兔同笼

1、鸡兔同笼问题的来历

这个问题,是我国古代趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

2无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。、鸡兔同笼的解题思路

(1)砍足法

解答思路是这样的:如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的.总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了。

;

小升初奥数分数百分数知识点总结

如果两个数是互质数,它们的公因数就是1。

【 #小学奥数# 导语】分数表示一个数是另一个数的几分之几,或一个与所有的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。以下是 考 网整理的相关资料,希望对您有所帮助!

(3)“比、占、是、相当于”后面的就是标准量

【篇一】

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变1、准确数:。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

④设思维方法:为了解题的方便,可以把题目中不相等的量设成相等或者设某种情况成立,计算出相应的结果,然后再进行调整,求出结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

【篇二】

分数和百分数的常用小学数学公式:

1、特殊形式

(1)“的”字类

“的”前ד的”后

(2)“是、相当于、占”字类

“是”前÷“是”后

“相当于”前÷“相当于”后

“占”前÷“占”后

(3)“比”字类

2、找标准量(单位“1”)的方法

要正确找准单位“1”的量(即标准量)必须从题目中的分率句着手。

(1)分数应用题,存在着整体和部分两个数量,一般

来说,整体是标准量,部分是比较量。

(2)“的”前就是标准量

(4)工程问题中工作总量就是单位“1”

3、分数应用题的解题公式

标准量×对应分率=比较量

标准量×(1+分率)=比较量

标准量×(1—分率)=比较量

比较量÷对应分率=标准量

比较量÷(1+分率)=标准量

比较量÷(1—分率)=标准量

比较量÷标准量=对应分率

(1)

4、百分率

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-5%)

【篇三】

分数与百分数应用题

1、学校举行一次数学讲座,整个教室坐满了听众,其中两个人中有一个六年级学生,四个人中有一个五年级学生,七个人中有一个四年级学生,还有六位教师。问整个教室听课的有多少人?

2、四、五年级参加航模小组共56人。从四年级来的学生中,男生占2/3.从五年级来的学生中,男生占75%。四、五年级来的女生一样多。四、五年级各有多少人参加航模小组?

3、学校阅览室里有36名学生在看书,其中女生占4/9,后来又有几名女生来看书,这时女生人数占所有看书人数的9/19,问后来又有几名女生来看书?

4、某班学生缺席的人数是出席人数的1/6,此后因为从教室里又有一个学生走出,于是缺席的人数等于出席人数的1/5,这个班一共有多少人?

5、某校五年级共有学生152人,选出男同学的1/11和5个女同学参加科技小组,剩下的男女同学人数刚好相等,求这个年级男女同学各有多少人?

6、一桶油,次取出全桶的20%,第二次取出20千克,第三次取出的等于前两次数量之和,桶里还剩下8千克,原桶里共有多少千克油?

7、有纯酒精含量不同的三种酒精溶液A、B、C,它们的纯酒精含量分别是40%、36%、35%,需配制纯酒精含量为39%的酒精溶液12升,至少要取A种酒精溶液多少升?

8、甲、乙、丙、丁四人共同购置一只价值4200元的游艇,甲支付的是其余三人所付总数的1/4,乙支付的比其余三人所支付的总数少50%,丙支付的占其余三人所支付的总数的1/3,那么丁支付的是多少?

9、两筐苹果共重51千克,筐的1/3与第二筐的2/5共重18.2千克,两筐苹果各重多少千克?

10、这次参加全市数学竞赛的学生,男生人数的6/21正好和女生人数的5/7相等。男生比女生多几倍?

11、某商店有两件商品,其中一件商品成本增加25%出售,一件商品按成本减少20%出售,售价恰好相同,那么两件商品售价总和是两件商品成本总和的几分之几?

12、学校植树,天完成了的3/8,第二天完成了余下的2/3,第三天植树55棵,结果超过的1/4,原植树多少棵?

13、一篓苹果分给甲、乙、丙。甲分得全部苹果的1/5加5个苹果,乙分得全部苹果的1/4加7个苹果,丙分得其余苹果的一半,剩下的是一篓苹果的1/8,求这篓苹果有多少个?

14、育才小学举行三年级数学竞赛,参加竞赛的女生人数比男生多28名,根据成绩,男生全部列入优良,女生则有1/4没有达到优良成绩,男女生取得优良成绩的共计42名,参加比赛的男女生人数占全年级的20%,三年级共有学生多少人?

15、一个班,女同学比男同学的2/3多4人,如果男同学减少3人,女同学增加4人,那么男女同学的人数恰好相等。这个班男、女同学各有多少人?

16、六(1)班的人数比六(2)班多10%,六(2)班的人数比六(3)班的人数少10%,请你判断:六(1)班和六(3)班哪个班的人数多?