湘教版九年级上册数学内容 湘教版9年级上册数学
初三九年级上册数学的知识点归纳
初三九年级上册数学的知识点归纳1 九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下:
湘教版九年级上册数学内容 湘教版9年级上册数学
湘教版九年级上册数学内容 湘教版9年级上册数学
湘教版九年级上册数学内容 湘教版9年级上册数学
第21章 二次根式
学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:
注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。
二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。
第22章 一元二次方程
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,
22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
第23章 旋转
学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。
23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。后举例说明用旋转可以进行图案设计。
23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
23.3课题学习 图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。
第24章 圆
圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。
24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。
24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。后介绍圆和圆的位置关系。
24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。
24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。后介绍圆锥的侧面积公式。
第25 章 概率初步
将一枚硬抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。
25.1概率一节首先通过实例介绍随机的概念,然后通过掷问题引出概率的概念。
25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。
25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。
25.4课题学习 键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。
初三九年级上册数学的知识点归纳2
一、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:
a.圆心角和圆周角在同一个圆或等圆中;(相关知识点 如何证明四点共圆 )
b.它们对着同一条弧或者对的两条弧是等弧
c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.
②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.
二、圆周角定理的推论
推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等
推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径
推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形
三、推论解释说明
圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.
②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”
③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件
④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.
初三九年级上册数学的知识点归纳3
知识点一: 二次根式的概念
形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),
(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知识点二:取值范围
1. 二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
知识点三:二次根式a(a0)的非负性
a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和、偶次方类似。这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
知识点四:二次根式(a) 的性质
(a)2=a(a0)
文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a0,则
a=(a)2,如:2=(2)2,1/2=(1/2)2.
知识点五:二次根式的性质
a2=|a|
文字语言叙述为:一个数的平方的算术平方根等于这个数的。
注:
1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a (a若a是负数,则等于a的相反数-a,即a2=|a|=-a (a﹤0);
2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;
3、化简a2时,先将它化成|a|,再根据的意义来进行化简。
知识点六:(a)2与a2的异同点
1、不同点:(a)2与a2表示的意义是不同的,(a)2表示一个非负数a的算术平方根的平方,而a2表示一个实数a的平方的算术平方根;在(a)2中,而a2中a可以是正实数,0,负实数。但(a)2与a2都是非负数,即(a)20,a20。因而它的运算的结果是有别的,(a)2=a(a0) ,而a2=|a|。
2、相同点:当被开方数都是非负数,即a0时,(a)2=a﹤0时,(a)2无意义,而a2=|a|=-a.
初三九年级上册数学的知识点归纳4
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的.恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方公式
a+ba—b=a^2—b^2
两个数的和与这两个数的的积等于这两个数的平方。
初三九年级上册数学的知识点归纳5
一、等腰三角形
1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)
3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴
3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形
等边三角形
1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
二、直角三角形全等
1、直角三角形全等的判定有5种:
(1)、两角及其夹边对应相等的两个三角形全等;(asa)
(2)、两边及其夹角对应相等的两个三角形全等;(sas)
(3)、三边对应相等的两个三角形全等;(sss)
(4)、两角及其中一角的对边对应相等的两个三角形全等;(aas)
(5)、斜边及一条直角边对应相等的两个三角形全等;(hl)
2、在直角三角形中,如有一个内角等于30,那么它所对的直角边等于斜边的一半
3、在直角三角形中,斜边上的中线等于斜边的一半
4垂直平分线:垂直于一条线段并且平分这条线段的直线。
性质:线段垂直平分线上的点到这一条线段两个端点距离相等。
判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。
6、角平分线上的点到角两边的距离相等。
7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
8、角平分线是到角的两边距离相等的所有点的。
9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
10、三角形三条中线交于一点,交点为三角形的重心。
11、三角形三条高线交于一点,交点为三角形的垂心。
三、平行四边的定义
1、定义:两线对边分别平行的四边形叫做平行四边形,
2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。
3、判定:(1)一组对边平行且相等的四边形是平行四边形。
(2)两条对角线互相平分的四边形是平行四边形。
(3)两组对边分别相等的四边形是平行四边形。
(4)两组对角分别相等的四边形是平行四边形。
(5)一组对边平行,一组对角相等的四边形是平行四边形。
(6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。
两个命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。
(2)一组对边相等,一组对角相等的四边形是平行四边形。
四、矩形
1、定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
2、性质:(1)具有平行四边形的性质,(2)对角线相等,(3)四个角都是直角。
(4)矩形是轴对称图形,有两条对称轴。
3、判定:(1)有三个角是直角的四边形是矩形。
(2)对角线相等的平行四边形是矩形。
五、菱形
1、定义:一组邻边相等的平行四边形叫做菱形。
2、性质:(1)具有平行四边形的性质,(2)四条边都相等,(3)两条对角线互相垂直,每一条对角线平分一组对角。(4)菱形是轴对称图形,每条对角线所在的直线都是对称轴。
3、判定:(1)四条边都相等的四边形是菱形。
(2)对角线互相垂直的平行四边形是菱形。
(3)一条对角线平分一组对角的平行四边形是菱形。
六、正方形
1、定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。
2、性质:正方形具有平行四边形、矩形、菱形的一切性质。
3、判定:(1)有一个内角是直角的菱形是正方形;
(2)有一组邻边相等的矩形是正方形;
(3)对角线相等的菱形是正方形;
(4)对角线互相垂直的矩形是正方形。
七、梯形定义:
一组对边平行且另一组对边不平行的四边形叫做梯形。
八、等腰梯形
1、定义:两条腰相等的梯形叫做等腰梯形。
2、性质:等腰梯形同一底上的两个内角相等,对角线相等。
3、同一底上的两个内角相等的梯形是等腰梯形。
九、三角形的中位线
定义:连接三角形两边中点的线段。
性质:平行于第三边,并且等于第三边的一半。
十、梯形的中位线
定义:连接梯形两腰中点的线段。
性质:平行于两底,并且等于两底和的一半。
初三数学上册课本知识点总结
课堂临时报佛脚,不如 课前预习 好。其实任何学科都是一样的,学习任何一门学科,勤奋都是的 学习 方法 ,没有之一,书山有路勤为径。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。
初三数学课本知识点
数学—函数
1、二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点p(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点a(x?,0)和b(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
2、二次函数的图像
在数学平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
iv.抛物线的性质
1.数学抛物线是轴对称图形。对称轴为直线x=-b/2a。
数学对称轴与抛物线的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点p,坐标为:p(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,p在y轴上;当δ=b^2-4ac=0时,p在x轴上。
3.数学二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
初三新学期数学知识点
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是
1、这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:
去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
2、不等式与不等式组
不等式:
①用符号”=“号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
九年级数学 知识点归纳
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
初三数学复习知识点
有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
【考察内容】
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方公式的几何意义
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、 总结 、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
【考察内容】
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础
相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。
【考察内容】
①平行线的性质(公理)
②平行线的判别方法
③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
【考察内容】
①考察平面直角坐标系内点的坐标特征
②函数自变量的取值范围和球函数的值
③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
【考察内容】
①方程组的解法,解方程组
②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
【考察内容:】
①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。
③留意不等式(组)和函数图像的结合问题。
(5)数据库的收集整理与描述
分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。
初三数学上册课本知识点总结相关 文章 :
★ 九年级数学上册重要知识点总结
★ 初三上册数学知识点总结
★ 初三数学知识点上册总结归纳
★ 九年级上册数学知识点归纳整理
★ 初三上册数学知识点归纳
★ 九年级上册数学知识点归纳
★ 初中数学必备知识点总结初三数学上册一二章知识点
★ 初三数学上学期学习总结
★ 九年级上册数学知识点
★ 初三上册数学知识点 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
九年级上册数学书内容有哪些?
九年级数学分为代数、几何两个部分。
代数内容有二次函数,统计初步二章;几何内容有相似三角形、锐角三角比、圆与正多边形三章。初三数学的学习,是以前两年数学学习为基础的,是对已学知识的加深、拓宽、综合与延续,是初中数学学习的重点,也是中考考查的重点。
相信很多同学已经体会到这样一件事,就是初一的数学比小学难,初二的数学比初一的数学更难,初三的数学已经有同学上课听不懂,盯着黑板发呆的人不少。
初三数学是以前两年的学习内容为基础的,可以用来复习、巩固相关的内容,同时新知识的学习常常由旧知识引入或要用到前面所学过的内容,甚至是已有知识的综合、提高与延续。因此在学习中,要注意前后知识的联系,以便达到巩固与提高的目的。
其实,要学好初中数学,初一的时候一定要打好基础,初二的时候成绩要稳得住,初三复习阶段需要多总结错题,这样中考才能考出理想的成绩。
为了帮助学生学好初三数学,我给大家分享一份初三数学上册的全册知识点总结,、希望这份资料能够补上孩子的不足,好好利用这份资料就会在开学考试的时候考出好成绩。正好现在有时间,好好学习吧!
九年级数学上册期中知识点
1.九年级数学上册期中知识点
一、能正确理解实数的有关概念
我们已经知道整数和统称为。并规定无限不循环是无理数,这样我们把有理数和无理数统称为实数,即实数这个大家庭里有有理数和无理数两大成员。学习时应注意分清有理数和无理数是两类完全不同的数,就是说如果一个数是有理数,那么它一定不是无理数,反之,如果一个数是无理数,那么它一定不是有理数。
二、正确理解实数的分类
实数的分类可从两个角度去思考,即(1)按定义来分类;(2)按正、来分类。但要注意0在实数里也扮演着重要角色.我们通常把正实数和0合称为非负数,把负实数和0合称为非正数。
三、正确理解实数与数轴的关系
实数与数轴上的点是一一对应的,就是说所有的实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数。数轴上的任一点表示的数,是有理数,就是无理数。
在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等.实数a的就是在数轴上这个数对应的点与原点的距离。
利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,大的反而小。
四、熟练掌握实数的有关性质
实数和有理数一样也有许多的重要性质.具体地讲可从以下几方面去思考:
1、相反数实数a的相反数是-a,0的相反数是0,具体地,若a与b互为相反数,则a+b=0;反之,若a+b=0,则a与b互为相反数。
2、一个正实数的是它本身,一个负实数的是它的相反数,0的是0.实数a的可表示就是说实数a的一定是一个非负数。
3、倒数乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数.这里应特别注意的是0没有倒数。
4、实数大小的比较任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数大的反而小。
5、实数的运算实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以方.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用。
2.九年级数学上册期中知识点
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质;
(2)正方形的四个角都是直角,四条边都相等;
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;
(4)正方形是轴对称图形,有4条对称轴;
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
后证明它是矩形(或菱形)。
3.九年级数学上册期中知识点
一、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:
a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆)
b.它们对着同一条弧或者对的两条弧是等弧
c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.
②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.
二、圆周角定理的推论
推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等
推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径
推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形
三、推论解释说明
圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.
②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”
③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件
④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.
4.九年级数学上册期中知识点
不等式的概念
1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的叫做这个不等式的解的,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法。
不等式基本性质
1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以或除以同一个正数,不等号的方向不变。
3、不等式两边都乘以或除以同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。
一元一次不等式组
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法
1分别求出不等式组中各个不等式的解集。
2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。
7、不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
5.九年级数学上册期中知识点
1.数的分类及概念数系表:
说明:分类的原则:1)相称(不重、不漏)2)有标准
2.非负数:正实数与零的统称。(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4.相反数:①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.:①定义(两种):
代数定义:
几何定义:数a的顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
初三上册数学知识点总结
读书,始读,未知有疑;其次,则渐渐有疑;中则节节是疑。过了这一番,疑渐渐释,以至融会贯通,都无所疑,方始是学。下面给大家分享一些初三上册数学知识点,希望对大家有所帮助。
初三上册数学知识点1
特殊平行四边形
1、菱形的性质与判定
①菱形的定义:
一组邻边相等的平行四边形叫做菱形。
②菱形的性质:
具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
③菱形的判别 方法 :
一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2、矩形的性质与判定
①矩形的定义:
有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
②矩形的性质:
具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)
③矩形的判定:
有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
④推论:直角三角形斜边上的中线等于斜边的一半。
3、正方形的性质与判定
①正方形的定义:
一组邻边相等的矩形叫做正方形。
②正方形的性质:
正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
③正方形常用的判定:
有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行边形四者之间的关系
⑤梯形定义:
一组对边平行且另一组对边不平行的四边形叫做梯形。
两条腰相等的梯形叫做等腰梯形。
一条腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性质:
等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
三角形的中位线平行于第三边,并且等于第三边的一半。
夹在两条平行线间的平行线段相等。
在直角三角形中,斜边上的中线等于斜边的一半
初三上册数学知识点2
一元二次方程
1、认识一元二次方程
只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0
(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程
①配方法 <即将其变为(x+m)2=0的形式>
配方法解一元二次方程的基本步骤:
把方程化成一元二次方程的一般形式;
将二次项系数化成1;
把常数项移到方程的右边;
两边加上一次项系数的一半的平方;
把方程转化成的形式;
两边开方求其根。
3、用公式法求解一元二次方程
②公式法 (注意在找abc时须先把方程化为一般形式)
4、用因式分解法求解一元二次方程
③分解因式法
把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)
5、一元二次方程的根与系数的关系
①根与系数的关系:
当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac<0时,方程无实数根。
②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有:
③一元二次方程的根与系数的关系的作用:
已知方程的一根,求另一根;
不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:
已知方程的两根x1、x2,可以构造一元二次方程:
x2-(x1+x2)x+x1x2=0
已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根
6、应用一元二次方程
①在利用方程来解应用题时,主要分为两个步骤:
设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);
寻找等量关系(一般地,题目中会含有一表述等量关系的 句子 ,只须找到此句话即可根据其列出方程)。
②处理问题的过程可以进一步概括为
初三上册数学知识点3
图形的相似
1、成比例线段
①线段的比
如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成
四条线段a、b、c、d中,如果a与b的比等于c与d的比,即
那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.
②注意点:
a:b=k,说明a是b的k倍
由于线段 a、b的长度都是正数,所以k是正数
比与所选线段的长度单位无关,求出时两条线段的长度单位要一致
除了a=b之外,a:b≠b:a
比例的基本性质:若
则ad=bc; 若ad=bc, 则
2、平行线分线段成比例
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则
3. 黄金分割
如图1,点C把线段AB分成两条线段AC和BC,如果
那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
黄金分割点是美、令人赏心悦目的点.
4.相似多边形
① 含义:
一般地,形状相同的图形称为相似图形.
对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.
②注意点:
在相似多边形中,为简单的就是相似三角形.
对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.
全等三角形是相似三角的特例,这时相似比等于1.
注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
相似三角形周长的比等于相似比.
相似三角形面积的比等于相似比的平方.
相似多边形的周长等于相似比;面积比等于相似比的平方.
5、探索三角形相似的条件
①相似三角形的判定方法:
②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
③相似三角形的判定定理的证明
④利用相似三角形测高
⑤相似三角形的性质
⑥图形的位似
初三上册数学知识点 总结 相关 文章 :
★ 九年级数学上册重要知识点总结
★ 初三数学知识点考点归纳总结
★ 九年级上册数学知识点归纳整理
★ 初三数学知识点归纳总结
★ 初三数学知识点总结
★ 初三上册数学知识点盘点与数学学习方法
★ 初三数学重要公式知识大全
★ 初三九年级上册数学知识点
★ 初中数学必备知识点总结初三数学上册一二章知识点
★ 人教版九年级数学知识点归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
初三数学上册知识点总结归纳
还不清楚初三数学知识点有哪些的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“初三数学上册知识点总结归纳”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!
初三数学上册知识点总结归纳
1、
一个数的就是表示这个数的点与原点的距离,|a|≥0。零的时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,大的反而小。
(1)一个正实数的是它本身;一个负实数的是它的相反数;0的是0。
(2)实数的是一个非负数,从数轴上看,一个实数的就是数轴上表示这个数的点到原点的距离。
(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号"││"是"非负数"的标志;数a的只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
2、解一元二次方程
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接方法:
用直接方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m。
直接方法就是平方的逆运算。通常用根号表示其运算结果。
(2)配方法
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)。
2)系数化1:将二次项系数化为1。
3)移项:将常数项移到等号右侧。
4)配方:等号左右两边同时加上一次项系数一半的平方。
5)变形:将等号左边的代数式写成完全平方形式。
6)开方:左右同时方。
7)求解:整理即可得到原方程的根。
(3)公式法
公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圆的必考知识点
(1)圆
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
(2)圆的相关特点
1)径
连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r。
2)弦
连接圆上任意两点的线段叫做弦。在同一个圆内长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
3)弧
圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
4)角
顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
拓展阅读:初三数学怎么备考复习
一、回归课本,夯实基础,做好预习。
数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。复习课的内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。
二、提高课堂听课效率,多动脑,勤动手。
初三的课只有两种形式:复习课和评讲课,到初三所有课都进入复习阶段,通过复习,学生要知道自己哪些知识点掌握的比较好,哪些知识点有待提高,因此在复习课之前一定要有自已的思考,这样听课的目的就明确了。现在学生手中都会有一些复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的旧知识,可进行查漏补缺,以减少听课过程中的困难,自己理解了的东西与老师的讲解进行比较、分析即可提高自己的数学思维;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,事半功倍。此外对于老师讲课中的难点,重点要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的`记录,以便复习,消化,思考。
三、建立错题本,查漏补缺。
初三复习,各类试题要做几十套,甚至上百套。人教学习网的特级教师提醒学生可以建立一个错题本,把平时做错的题系统的整理好,在上面写上评析和做错的原因,每过一段时间,就把“错题笔记”拿出来看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三,融会贯通”,及时归纳总结。每次订正试卷或作业时,在错题旁边要写明做错的原因。
四、抓住关键,突出重点,不以题量论英雄。
学好数学要做大量的题,但反过来做了大量的题,数学不一定好。“不要以题量论英雄”,题海战术,有时候往往起到事倍功半的效果,因此要提高解题的效率。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏,那么多做题的结果,反而巩固了你的缺欠,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,但是要有针对性地做题,突出重点,抓住关键。复习中,所谓突出重点,主要是指突出教材中的重点知识,突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。数学思想与方法是数学的精髓,是联系数学中各类知识的纽带。要抓住教材中的重点内容,掌握分析方法,从不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。培养正确地把日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。
五、要养成良好的解题习惯。
如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学),自己感觉很好,平时做题只是写个,不注重解题过程,书写不规范,在正规考试中即使对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是初三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在轮复习中逐步克服,否则,后患无穷。
六、提高复习兴趣,克服“高原现象”。
高原现象在数学复习阶段表现得十分明显。平时授新课,新鲜有趣;搞复习,要重复已学的内容,有的同学会觉得单调、枯燥无味,致使成绩提高缓慢,甚至下降。针对这种情况,人教学习网的老师提醒同学们,一方面要从思想上提高对复习的认识,主动进行复习;另一方面,要以“新”提高复习的积极性。诸如制订新的复习;采用灵活的复习方法;抓住新颖有趣的内容和习题,把知识串连起来,使书“由厚变薄”。
技校学什么专业比较好
1、幼师
幼师专业现在是非常重视的一个专业,随着我国幼教事业的迅速发展,对于幼儿教师和管理人员的需求骤增,幼师专业的毕业生供不应求。大家比较看好幼师专业的原因主要在于:就业稳定、就业率高、工作体面。
2、护理
护理职业一直是上地位较高、薪水丰厚的职业之一,当然在国内护理人才也是紧缺人才,我国要求每位医生必须配有3名护士,但是目前我国护士人员还远远达不到这个标准。各大医院频繁出现护理人员短缺现象,专业的护理人才少之又少,所以学习护理无疑是一个不错的选择。护理专业毕业后的职业名称是:护士。在我们大家的印象中,一提到护士就都有白衣天使的形象,一名合格的护士是用真诚的心,去善待痛苦中的病人,技术上追求精益求精,服务上追求全心全意。是受人们尊崇又高尚的职业!
3、旅游
学导游,走遍天下,领略全国各地风光,感受不一样的文化生活!在给游客讲解各地风情的同时提高自身的综合素养,工作越久,越能不断提升自身修养,成为知性女性。当然,还有好多人认为导游是吃年轻饭的,其实不然,许多导游专业的学生在岗位成才,升职后成为旅游管理人员,也有的学生随着年龄的增长转入二线部门;或是能力得到提高后转入了其他行业,做的也非常出色。
4、、高铁
随着高速和城市轨道交通的快速发展,为学生提供了良好的就业信息和发展机会,初中毕业的学生选择学、高铁专业的学生逐年增加,成为众多学生的追捧。学生毕业后有的成为高铁乘务员、列车长、轨道车司机、城市轻轨司机、地铁司机、电工、维修工、客运员、票务员、信号工、安检员,还有部分毕业生担任段职务!初中毕业生可以选择的中专业有:城市轨道交通供电、电气化铁道供电、运输管理、城市轨道交通运营管理、内燃机车运用与检修等等,以后在、城轨行业就业,从事:地铁/轻轨维修电工、维修电工、高铁乘务员客运员、轻轨/地铁安检员、内燃机车司机作业车司机等工作。
5、厨师
众多女生喜欢着这样的男生:带着高高的白色帽子,认真的给自己心爱的女生烹调出一手味道鲜美的食物,在某个特别的节日里会让你感觉到无比的幸福。学厨师除了兴趣之外,这个行业本身的发展也是学生们选择的一个重要因素。餐饮业多年来一直保持着较强的增长势头,同时也带动了餐饮行业薪资水平的上扬。厨师薪资水平名列前茅,被誉为十大黄金职业之一,厨师具有高薪低压、工作稳定等优势,成为众人争相选择的职业。
6、计算机IT
计算机已是我们日常生活中不可缺少的一部分,上技校学什么好?就业能用到的才是好的。而计算机就具有这个特点。不管你走到哪个单位的哪个岗位,基本是离不开计算机的。不过,好多学生可能认为我从小就学了计算机,再上技校学计算机还有必要吗?当然是有必要的,从小学到的无非是一些简单的计算机使用、上网功能等,如果想深入到计算机行业,这里面的分类就多了,像平面设计、室内装修设计、网络营销、软件开发、UI设计、大数据、VR技术、电子竞技等专业都是属于计算机类的。计算机,与时代气息息息相关的专业,也成为近几年就业比较火的专业。
7、数控
数控专业,比较测重学生的动手实践能力,比较适合男生学习,这个专业就业范围非常的广泛,涉及很多个领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)伺服驱动技术;(4)自动控制技术;(5)传感器技术;(6)软件技术等。这就意味着学好数控技术以后就业的可选择性很多!就业单位也多是大中型的企业,就业工资也较其他专业起点高。
8、会计
众所周知,会计是越老越吃香,是可以长久发展的职业。一般公司的会计工作都是掌握在自己的亲信(戚)手里。会计职业严肃、认真,原则性强。适合心思细腻、仔细认真的学生学习。
9、市场营销
在各大会上,我们都不难看出,市场人才的职业是较多的。因为好多企业的核心竞争力就在于市场营销人才。该专业历年平均就业率达97%左右。市场营销也是一个有挑战、有需要付出努力的一行。喜欢冒险、勇于挑战、肯于付出、想从事管理工作和营销工作的学生可以选择此专业。
10、汽修
汽车维修是适应发展的需要,随着的发展,汽车数量的增加,汽车维修人员的缺乏,需要一批,专业强,素质高的维修人员。汽车维修作为实施的技能紧缺人才培养工程重点之一,全国人才需求量30多万。汽修专业培养适应现代汽车行业发展,掌握汽车构造与原理、汽车电器设备、汽车检测设备使用、汽车故障诊断等多方面的汽车基础知识,熟练掌握各种汽车检测设备的使用及整车的检测流程,具备汽车检测专业较高的作技能和技术指导层次,具有一定汽修企业管理的高级知识技能复合型行业金领。
数学九年级期中上册知识点
1.数学九年级期中上册知识点
一元二次方程
1、认识一元二次方程
只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0
(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程
①配方法即将其变为(x+m)2=0的形式>
配方法解一元二次方程的基本步骤:
把方程化成一元二次方程的一般形式;
将二次项系数化成1;
把常数项移到方程的右边;
两边加上一次项系数的一半的平方;
把方程转化成的形式;
两边开方求其根。
3、用公式法求解一元二次方程
②公式法(注意在找abc时须先把方程化为一般形式)
4、用因式分解法求解一元二次方程
③分解因式法
把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)
5、一元二次方程的根与系数的关系
①根与系数的关系:
当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac<0时,方程无实数根。
②如果一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有:
③一元二次方程的根与系数的关系的作用:
已知方程的一根,求另一根;
不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:
已知方程的两根x1、x2,可以构造一元二次方程:
x2-(x1+x2)x+x1x2=0
已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根
6、应用一元二次方程
在利用方程来解应用题时,主要分为两个步骤:
设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);
寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
2.数学九年级期中上册知识点
1、
一个数的就是表示这个数的点与原点的距离,|a|≥0。零的时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,大的反而小。
(1)一个正实数的是它本身;一个负实数的是它的相反数;0的是0。
(2)实数的是一个非负数,从数轴上看,一个实数的就是数轴上表示这个数的点到原点的距离。
(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号"││"是"非负数"的标志;数a的只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
2、解一元二次方程
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接方法:
用直接方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m。
直接方法就是平方的逆运算。通常用根号表示其运算结果。
(2)配方法
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)。
2)系数化1:将二次项系数化为1。
3)移项:将常数项移到等号右侧。
4)配方:等号左右两边同时加上一次项系数一半的平方。
5)变形:将等号左边的代数式写成完全平方形式。
6)开方:左右同时方。
7)求解:整理即可得到原方程的根。
(3)公式法
公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圆的必考知识点
(1)圆
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
(2)圆的相关特点
1)径
连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r。
2)弦
连接圆上任意两点的线段叫做弦。在同一个圆内长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
3)弧
圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
4)角
顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
3.数学九年级期中上册知识点
1、数的分类及概念数系表:
说明:分类的原则:1)相称(不重、不漏);2)有标准。
2、非负数:正实数与零的统称。(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3、倒数:①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4、相反数:①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5、数轴:①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现意义;C.建立点与实数的一一对应关系。
6、奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7、:①定义(两种):
代数定义:
几何定义:数a的顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
4.数学九年级期中上册知识点
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质;
(2)正方形的四个角都是直角,四条边都相等;
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;
(4)正方形是轴对称图形,有4条对称轴;
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
后证明它是矩形(或菱形)。
5.数学九年级期中上册知识点
特殊平行四边形
1、菱形的性质与判定
①菱形的定义:
一组邻边相等的平行四边形叫做菱形。
②菱形的性质:
具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
③菱形的判别方法:
一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2、矩形的性质与判定
①矩形的定义:
有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
②矩形的性质:
具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)
③矩形的判定:
有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
④推论:直角三角形斜边上的中线等于斜边的一半。
3、正方形的性质与判定
①正方形的定义:
一组邻边相等的矩形叫做正方形。
②正方形的性质:
正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
③正方形常用的判定:
有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行边形四者之间的关系
⑤梯形定义:
一组对边平行且另一组对边不平行的四边形叫做梯形。
两条腰相等的梯形叫做等腰梯形。
一条腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性质:
等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
三角形的中位线平行于第三边,并且等于第三边的一半。
夹在两条平行线间的平行线段相等。
在直角三角形中,斜边上的中线等于斜边的一半
数学九年级上册知识点归纳总结
九年级的学子要加油了呀,马上就要面临中考了。不知道同学们重要的数学的知识点总结过没。下面是由我为大家整理的“数学九年级上册知识点归纳总结”,仅供参考,欢迎大家阅读。
数学九年级上册知识点归纳总结
第21章 二次根式
学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:
注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到
并运用它们进行二次根式的化简。
二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。
第22章 一元二次方程
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,
22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
第23章 旋转
学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。
23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的'方法。后举例说明用旋转可以进行图案设计。
23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
23.3课题学习 图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。
第24章 圆
圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。
24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。
24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。后介绍圆和圆的位置关系。
24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。
24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。后介绍圆锥的侧面积公式。
第25 章 概率初步
将一枚硬抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。
25.1概率一节首先通过实例介绍随机的概念,然后通过掷问题引出概率的概念。
25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。
25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。
25.4课题学习 键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。
拓展阅读:快速提高初三数学成绩的方法
1、年级数学教材分两册,共十章。图形与证明部分学习教材分《证明(二)》和《证明(三)》两章完成,我们在学习过程中要结合之前学过的《证明(一)》内容不断体会证明的必要性,训练自己利用公理和已证明过的定理(推论)来说理的过程,要注意证明的格式,必须有因才有果,切不可跳步。除了说理,另外我们还需要有意识地在证明三角形和四边形的定理和推论时梳理知识结构,归纳性质和判定方法,为总复习打基础。
2、年级还将学习一元二次方程,它的解法很多:因式分解法、公式法和配方法。因式分解法很简便,公式法应用普遍但公式一定要记牢,配方法是个难点,但它对以后二次函数的学习很有帮助,要牢固掌握。我们还要学会“对症下”,选择的方法来解每一个方程。另外一个学习重点也是难点就是如何用一元二次方程来解决具体问题,在学习过程中大家可以回顾用一元一次方程或二元一次方程组解决实际问题的步骤。特别注意方程的解要符合实际情况。
3、关函数九年级我们不仅要讨论反比例函数还要学习二次函数,结合已学过的一次函数,它们的一个重要学习方法就是“数形结合”。对于三种函数的表达式、图像及其性质我们都要重点掌握。另外利用三种函数来解决实际问题依然是我们学习的重点和难点。
4、计和概率部分的学习希望大家能先将前四册教材涉及的有关章节复习一下,你会发现九年级上下两章的学习内容更加贴近实际生活,因此难度也有所增加。“用大量重复实验中发生的频率来估计这件发生的概率”这一方法大家要理解,而如何用列表格或树状图的方法来解决求发生概率依然是我们学习的重点。
5、视图与投影》这一章延续了七年级有关三视图的内容,但我们需要考虑视线所不及的部分的形状,首先复习三视图是基本任务。投影所说的是两种光源所形成的平行投影和中心投影,大家一定要结合生活经验来学习。
6、是我们要新认识的图形。需要大家掌握的基本概念较多,作为应用的重点主要集中在有关切线的证明、弧长、扇形面积和圆锥侧面积的计算上。计算能力大家在平时一定要有意识的去提高。
7、三角函数解决直角三角形这一章我们既要掌握基本概念,还要会根据角度来求三角函数值及由函数值来推出锐角的度数。九个特殊锐角的三角函数值是必须记住的。另外大家在学习过程中要体会这部分内容与相似图形的联系,把所学知识系统化。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。