导数的四则运算法则公式是什么?

运算法则

高中数学导数运算公式(高中数学导数的计算方法)高中数学导数运算公式(高中数学导数的计算方法)


高中数学导数运算公式(高中数学导数的计算方法)


高中数学导数运算公式(高中数学导数的计算方法)


导数公式:y=c(c为常数) y'=0、y=x^n y'=nx^(n-1) ;运算法则:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'。

拓展资料

导数的四则运算法则公式如下所示:

加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'。

乘法法则:[f(x)g(x)]'=f(x)'g(x)+g(x)'f(x)。

除法法则:[f(x)/g(x)]'=[f(x)'g(x)-g(x)'f(x)]/g(x)^2。

导数公式的用法:

一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

以上内容参考:

导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。

一、什么是导数?

导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。

二、基本初等函数的导数公式

高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:

高中数学基本初等函数导数公式

三、导数加、减、乘、除四则运算法则

导数加、减、乘、除四则运算法则公式如下图所示:

1、加减法运算法则

导数的加、减法运算法则公式

2、乘除法运算法则

导数的乘、除法运算法则公式

【注】分母g(x)≠0.

为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。

简化后的导数四则运算法则公式

【注】分母v≠0.

四、复合函数求导公式(“链式法则”)

求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。

(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。

复合函数导数公式

(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。

【例】求y=sin(2x)的导数。

解:y=sin(2x)可看成y=sinu与u=2x的复合函数。

因为(sinu)'=cosu,(2x)'=2,

所以,[sin(2x)]'=(sinu)'×(2x)'

=cosu×2=2cosu=2cos(2x)。

五、可导函数在一点处的导数值的物理意义和几何意义

(1)物理意义:可导函数在该点处的瞬时变化率。

(2)几何意义:可导函数在该点处的切线斜率值。

【注】一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。

运算法则

减法法则:(f(x)-g(x))'=f'(x)-g'(x)

加法法则:(f(x)+g(x))'=f'(x)+g'(x)

乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

导数公式:y=c(c为常数) y'=0、y=x^n y'=nx^(n-1) ;运算法则:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'。

导数公式

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

求高中数学导数公式

常用导数公式:

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna,y=e^x y'=e^x

4、y=logax y'=logae/x,y=lnx y'=1/x

5、y=sinx y'=cosx

6、y=cosx y'=-sinx

7、y=tanx y'=1/cos^2x

8、y=cotx y'=-1/sin^2x

9、y=arcsinx y'=1/√1-x^2

10、y=arccosx y'=-1/√1-x^2

11、y=arctanx y'=1/1+x^2

12、y=arccotx y'=-1/1+x^2

导数的求导法则

由基本函数的和、、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

在湘教版高中数学2-2就有了,基本初等函数导数公式主要有以下

y=f(x)=c (c为常数),则f'(x)=0

f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

f(x)=e^x f'(x)=e^x

f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)

f(x)=lnx f'(x)=1/x (x>0)

f(x)=tanx f'(x)=1/cos^2 x

f(x)=cotx f'(x)=- 1/sin^2 x

导数运算法则如下

(f(x)+/-g(x))'=f'(x)+/- g'(x)

(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2

函数导数公式

UV=U'V+UV';U+V=U'+V';U/V=U'V-UV'/V^2;常数导数等于0,sinx'=cosx,lnx'=1/x,x^a=ax^a-1,cosx'=-sinx,e^x=e^x,logax=1/xloga,a^x=a^xloga,

常用导数公式

1.y=c(c为常数)

y'=0

2.y=x^n

y'=nx^(n-1)

3.y=a^x

y'=a^xlna

y=e^x

y'=e^x

4.y=logax

y'=﹙logae﹚/x

y=lnx

y'=1/x

5.y=sinx

y'=cosx

6.y=cosx

y'=-sinx

高中常用数学导数公式

导数是高中数学的一个重要知识点,那么,高中常用数学导数公式有哪些呢?下面我整理了一些相关信息,供大家参考!

1 数学导数公式有哪些

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

1 数学中几种求导数的方法

定义法:用导数的定义来求导数。

公式法:根据课本给出的公式来求导数。

隐函数法:利用隐函数来求导,图中给出隐函数求导的例题。

对数法:通过对数来求导数。

复合函数法:利用复合函数来求导数。

1 导数的运算法则

导数的运算法则,就是指导数的加、减、乘、除的四则运算法则,这也是需要掌握的重要内容,公式如下:

①(u±v)=u'v±vu'

②uv=u'v+uv'

③u/v=(u'v-uv')/v^2

这里边的u.v一般是代表的两个不同的函数,不会同时为常数。这三个运算法则中,特别要记住的是两个函数商的导数求法,分子中出现的是减号,这个地方容易出错。对于上面提到的二次函数,符合函数和的运算法则,所以y'=(ax^2)'+(bx)'+c'=2ax+b+0=2ax+b.