初一数学

一、正负数1、正数:大于0的数。2、负数:小于0的数。3、正数大于0,负数小于0,正数大于负数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;二、有理数1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)三、数轴1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2、数轴的三要素:原点、正方向、单位长度。3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。相反数的和为0 a+b=0 a、b互为相反数。四、有理数的加减法1、先定符号,再算。2、加法运算法则:同号相加,到相同符号,并把相加。异号相加,取大的加数的符号,并用较大的减去较小的。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。五、有理数乘法(先定积的符号,再定积的大小)1、同号得正,异号得负,并把相乘。任何数同0相乘,都得0。2、乘积是1的两个数互为倒数。

福建初一数学知识点总结_福建省初一数学卷子福建初一数学知识点总结_福建省初一数学卷子


福建初一数学知识点总结_福建省初一数学卷子


福建初一数学知识点总结_福建省初一数学卷子


初一下册数学重点知识有哪些?数学知识点,考生必看!

初中数学是中考必考三大科目之一,数学也是重要的得分科目,那么该如何学好数学科目呢?我整理了初一下册的知识点,供大家参考。

初一数学知识点重点——整式的运算

一、单项式、单项式的次数:

只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式.

一个单项式中,所有字母的指数的和叫做这个单项式的次数.

二、多项式

1、多项式、多项式的次数、项

几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式中次数的项的次数,叫做这个多项式的次数.

三、整式:单项式和多项式统称为整式.

初一数学知识点重点——整式的加减法: 整式加减法的一般步骤:(1)去括号;(2)合并同类项.

五、幂的运算性质:

1、同底数幂的乘法:

2、幂的乘方:

3、积的乘方:

4、同底数幂的除法:

初一数学知识点重点——零指数幂和负整数指数幂: 1、零指数幂:

2、负整数指数幂:

七、整式的乘除法:

1、单项式乘以单项式:

法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式.

2、单项式乘以多项式:

法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.

3、多项式乘以多项式:

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

4、单项式除以单项式:

单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.

5、多项式除以单项式:

多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.

初一数学知识点重点——整式乘法公式: 1、平方公式:

2、完全平方公式:

初一数学知识点重点总结 一、余角和补角:

1、余角:

定义:如果两个角的和是直角,那么称这两个角互为余角.

性质:同角或等角的余角相等.

2、补角:

定义:如果两个角的和是平角,那么称这两个角互为补角.

性质:同角或等角的补角相等.

二、对顶角:

我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角.

对顶角的性质:对顶角相等.

初一数学知识点重点总结 三、同位角、内错角、同旁内角:

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角.其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角.

四、平行线的判定:

1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行.简称:同位角相等,两直线平行.

2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行.简称:内错角相等,两直线平行.

3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.简称:同旁内角互补,两直线平行.

初中七年级数学知识点总结

天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。

初一数学知识点

1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

5.不等式解集的表示 方法 :

(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用简单的不等式表达出来,例如:x-1≤2的解集是x≤3

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)

(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。

7.不等式的性质:

(1)如果x>y,那么yy;(对称性)

(2)如果x>y,y>z;那么x>z;(传递性)

(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

(7)如果x>y>0,m>n>0,那么xm>yn

(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

初一下册数学知识点

1.数据的整理:我们利用划记法整理数据,如下图所示,

2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。如下图所示:

3.全面调查:考察全体对象的调查方式叫做全面调查。

4.抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

5.抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。

概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。

6.总体:要考察的全体对象称为总体。

7.个体:组成总体的每一个考察对象称为个体。

8.样本:被抽取的所有个体组成一个样本。为了使样本能够正确反映总体情况,对总体要有明确的规定;总体内所有观察单位必须是同质的;在抽取样本的过程中,必须遵守随机化原则;样本的观察单位还要有足够的数量。又称“子样”。按照一定的抽样规则从总体中取出的一部分个体。

9.样本容量:样本中个体的数目称为样本容量。

10.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。也称次数。在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

如有一组测量数据,数据的总个数N=148小的测量值Xmin=0.03,的测量值Xmax=31.67,按组距为△x=3.000将148个数据分为11组,其中分布在15.05~18.05范围内的数据有26个,则称该数据组的频数为26.

11.频率:频数与数据总数的比为频率。在相同的条件下,进行了n次试验,在这n次试验中,A发生的次数n(A)称为A发生的频数。比值n(A)/n称为A发生的频率,并记为fn(A).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。

(1)当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是A的概率.这种“频率稳定性”也就是通常所说的统计规律性。

(2)频率不等同于概率.由伯努利大数定理,当n趋向于无穷大的时候,频率fn(A)在一定意义下接近于概率P(A).频率公式:频数总体数量=频率

12.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的叫做组距。

初一数学方法技巧

1.请概括的说一下学习的方法

曰:“像做其他事一样,学习数学要研究方法。我为你们的方法是:超前学习,展开联想,多做 总结 ,找出合情合理。

2.请谈谈超前学习的好处

曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。

3.请谈谈联想与总结

曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

4.那么我们怎样预习呢?

曰:“先 说说 学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。

(2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

(2)对公式定理的预习,公式定理是使用多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

(3)对于例题及习题的处理见上面的(2)及下面的第五条。

初中七年级数学知识点总结相关 文章 :

★ 初中七年级数学知识点归纳整理

★ 七年级数学知识点整理大全

★ 初一数学课本知识点总结

★ 七年级数学知识点总结

★ 人教版初一数学知识点整理

★ 初一数学上册知识点归纳

★ 初中数学知识点整理:

★ 初中数学知识点总结大全

★ 七年级下数学知识点总结

★ 初一数学知识点归纳与学习方法

初一数学

一、正负数1、正数:大于0的数。2、负数:小于0的数。3、正数大于0,负数小于0,正数大于负数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;二、有理数1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)三、数轴1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2、数轴的三要素:原点、正方向、单位长度。3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。相反数的和为0 a+b=0 a、b互为相反数。四、有理数的加减法1、先定符号,再算。2、加法运算法则:同号相加,到相同符号,并把相加。异号相加,取大的加数的符号,并用较大的减去较小的。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。五、有理数乘法(先定积的符号,再定积的大小)1、同号得正,异号得负,并把相乘。任何数同0相乘,都得0。2、乘积是1的两个数互为倒数。

过D作DM⊥AC于M,DN⊥AB于N,证明:△FDM全等于△EDN(HL),∠DFM=∠DEN,∠AED+∠AFD=180°