立体几何知识点 立体几何知识点思维导图
必修二数学空间几何相关知识点
空间几何体表面积计算公式
立体几何知识点 立体几何知识点思维导图
立体几何知识点 立体几何知识点思维导图
1、直棱柱和正棱锥的表面积
设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:
S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、
正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、
如果设它的底面边长为a、底面周长为c、斜高为h'、则得到正n棱锥的侧面积计算公式
S=1/2xnah'=1/2xch'、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、
2、正棱台的表面积
正棱台的侧面展开图是一些全等的等腰梯形、
设棱台下底面边长为a、周长为c、上底面边长为a'、周长为c'、斜高为h'则得到正n棱台的侧面积公式: S=1/2xn(a+a')h'=1/2(c+c')h'、
3、球的表面积
S=4πR2、即球面面积等于它的大圆面积的四倍、
4.圆台的表面积
圆台的侧面展开图是一个扇环,它的.表面积等于上,下两个底面的面积和加上侧面的面积,即
S=π(r'2+r2+r'l+rl)
柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到
截面距离是一个矩形。与高的比的平方。
(3)棱台:
几何特征:①上下底面是相似的平行多边形;②侧面是梯形;③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线 数学知识点4为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
数学知识点3、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
求高中数学的知识点
3、直观图:直观图通常是在平行投影下画出的空间图形。常用的知识点
直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。直线与平面相交和平行统称为直线在平面外。一、、简易逻辑、推理与证明
2、描述法表示的一定要注意代表元素,注意区分是点集还是数集.
3、分析子集或真子集(或应用条件 )时是否忽略 的情况.
4、解问题时应注意分类讨论,不要忘了借助数轴或文氏图进行求解,同时注意端点值是否相等.
5、四种命题及其相互关系,互为逆否命题同真.复合命题的真如何判断?
6、“命题的否定”与“否命题”是两个不同的概念.命题的否定即“非p”,是对命题结论的否定;否命题是对原命题“若p则q”既否定条件又否定其结论.
7、全称命题、特称命题的否定是怎样的?全称命题为真需推证对所有的条件结论都成立,只要有一个反例就可以判断全称命题为;特称命题只要找到使结论成立的一个条件就可判断为真,只有推证所有的条件都不能使结论成立才能判断为.
8、充要条件的概念及判断(定义法、法).充要关系的判断可以转化为判断其逆否命题,也可以用反例或问题的特殊性作为推理的依据.
9、判断条件的充要关系时,要弄清充分条件与必要条件、充分条件与充要条件的区别.考虑问题要全面准确,使结论成立的充分条件或必要条件可以不只一个.
10、推理形式包括哪几种?常用的证明方法有哪些?是否掌握了每种证明方法的要求.
11、映射与函数的概念了解了吗?映射 中,你是否注意到了A中元素的任意性和B中与它对应元素的性.
12、函数的三要素及三种题型.注意定义域、值域为非空数集;定义域、值域要写成或区间的形式.
13、在解决函数问题时你是否注意到“定义域优先”的原则.
14、求函数的解析式时,你是否标明了定义域;判断函数的奇偶性时,是否先检验函数的定义域关于原点对称.
15、判定函数的单调性(求单调区间)时,你是否先求出定义域?是否错误地在各个单调区间之间添加了符号“ ”和“或”.
16、函数单调性的判定方法是什么?(定义、图像、导数).复合函数单调性的判断遵循“同增异减”的原则.是否掌握了已知函数的单调性求参数范围的方法?
17、特别注意函数单调性和奇偶性的逆用(比较大小、解不等式、求参数范围).
18、下列结论记住了吗?
①如果函数f (x)满足f (a+x)= f (a-x)或f (x)= f (2a-x),则函数f (x)的图像关于x=a对称;
②如果函数f (x)满足f (a+x)= - f (a-x)或f (x)= - f (2a-x),则函数f (x)的图像关于点(a,0)对称;
③如果函数f (x)满足f (x+T)= -f (x)或f (x+T)= ,则函数f(x)的周期为2T.
19、函数的奇偶性、对称性、周期性之间又怎样的关系?(知道其中的两个可求第三个)
20、函数的零点、方程的根、函数图像与x轴的交点的横坐标之间的关系.怎样判断函数y=f (x)在所给区间 (a,b)上是否有零点? 与函数有零点的关系是怎样的?
22、三个“二次”的关系和应用掌握了吗?求二次函数的最值时用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.求参数的范围可转化为根的分布.
23、特别提醒:二次方程ax2+bx+c=0的两根为不等式ax2+bx+c>0(<0)解集的端点值,也是二次函数y=ax2+bx+c的图像与x轴交点的横坐标.
24、研究函数问题准备好“数形结合”这个工具了吗?
25、函数图像的变换有哪几种?(平移、伸缩、对称)
27、恒成立问题不要忘了“主参换位”,注意验证等号是否成立.注意分离参数的方法.
28、解分式不等式应注意什么问题?(不能去分母,常采用移项通分求解)
29、解指数、对数不等式应注意什么问题?(化同底,利用单调性求解.注意底数不为1,对数的真数大于0)
30、不等式| ax+b | < c, | ax+b | > c (c>0)及不等式| x+a | +| x+b| >c( 31、会用不等式| a +b| | a | + | b | 、| a +b| | a- c | + | c-b |解(证)一些简单问题. 32、利用基本不等式求最值时,易忽略其使用的条件.(一正二定三相等) 33、重要不等式是指那几个不等式 ,由它推出的不等式链是什么? 34、不等式证明的基本方法掌握了吗?(比较法、综合法、分析法、反证法、放缩法、数学归纳法、单调性法) 35、注意线性规划的常见题型.线性规划问题中你是否考虑到目标函数中z的几何意义? 36、导数的定义还记得吗?它的几何意义和物理意义分别是什么? 37、常见函数的求导公式与和、、积、商的求导法则及复合函数的求导法则你都熟记了吗? 38、利用导数可解决哪些问题,具体步骤是什么?(切线、单调性、极值、最值) 39、函数的单调性和导函数的符号之间又怎样的关系?(充分条件) 极值点与使导函数值为0的点之间有怎样的关系?(必要条件) 40、三次函数y = ax3 + bx2 + cx + d (a 0)的图像你熟悉吗?单调性如何?它的对称中心是什么? 41、你能根据函数的单调性、极值画出函数的大致图像吗?借助函数的图像如何求已知函数在动区间上的极值(最值)? 42、已知函数零点的个数、两函数图像交点的个数、两函数图像的位置关系如何求参数范围? 三、三角函数 43、你对象限角、锐角、小于900的角、负角、终边相同的角等概念理解有误吗?角度制与弧度制是否混用? 44、记住三角函数的两种定义了吗?(比值定义、有向线段定义) 45、利用三角函数线和图像解三角不等式是否熟练? 46、求三角函数的值时是否考虑到x的范围?是否习惯用图像或单调性求解. 47、三角变换公式你记熟了吗?(同角三角关系、诱导公式、两角和的三角函数、倍角公式) 48、已知三角函数值求角时,要注意三角函数的选择、角的范围的挖掘. 49、三角变换过程中要注意“拆角、拼角”、切化弦的问题. 50、如何求函数y = Asin(ωx +φ)的单调区间、对称轴(中心)、周期?(求单调区间时要注意A、ω的正负;求周期时要注意ω的正负) 51、“五点作图法”你是否熟练掌握?如何作函数y = Asin(ωx +φ)的图像?如何由图像确定函数的解析式?(关键是确定A、ω、φ) 52、由y = sinx → y = Asin(ωx +φ)的变换你掌握了吗?反之怎样? 53、求y = sinx +cosx+ sinxcosx类型的函数的值域,换元时令 时,要注意 . 四、数列、数学归纳法 56、求等比数列的前n项和时,要注意分q = 1和q≠1两种情况. 57、数列求通项有几种方法?(公式、递推关系、归纳猜想证明).数列求和有几种常用方法?(公式、错位相减、裂项相消) 58、已知Sn 求an时你是否考虑到分n=1和n≠1两种情况? 59、如何解决数列中的单调性、最值问题? 60、应用数学归纳法时,一要注意步骤齐全(两步三结论);二要注意从n = k到n = k+1的过程中,先应用归纳设,再灵活应用比较法、分析法等其它方法. 61、你是否注意到数列与函数、方程、不等式的结合? 五、平面向量、解析几何 62、记住直线的倾斜角的范围,直线的斜率和倾斜角的关系是怎样的? 63、何为直线的方向向量?直线的方向向量与直线的斜率有何关系? 64、直线方程有几种形式,各有什么限制?是否注意到x = my + n形式的运用? 65、截距是距离吗?“截距相等”意味着什么? 66、两直线A1x + B1y + C1=0与A2x + B2y + C2=0平行、垂直的充要条件分别是什么? 67、要熟记点到直线的距离公式、两平行线间的距离公式. 68、解析几何中的对称有几种?(轴对称、中心对称)分别如何求解? 69、求曲线方程的一般步骤是什么?求曲线的方程与求曲线的轨迹有什么不同?求轨迹的常用方法有哪些? 70、直线和圆的位置关系如何判定(几何法、代数法)?直线和圆锥曲线的位置关系怎样判定? 71、圆锥曲线方程中a、b、c与e的关系记住了吗? 72、解题中是否注意到圆锥曲线定义的应用?要注意圆中由半径、弦心距和半弦长构成的直角三角形;椭圆、双曲线中的特征三角形和焦点三角形. 73、记住圆、椭圆、双曲线、抛物线中的常用结论. 74、容易忽略双曲线一支上的点P到相应焦点F的距离| PF |≥c-a这一条件来取舍. 75、记住解析几何的常见题型了吗?(位置关系问题、弦长问题、对称问题、中点弦问题、定点问题、定线问题、定值问题等) 76、记住解析几何中常用的解题方法(如设而不求、点法等.用点法求弦所在直线方程时要注意检验.) 77、在直线与圆锥曲线的有关计算中,经常由二次曲线方程与直线方程联立消元得形如Ax2 + Bx + C = 0的方程,在后面的计算中务必要考虑两个问题:①A与0的关系;②判别式△与0 的关系,你想到了吗? 78、解析几何问题的求解中,是否注意到平面几何知识的利用?如何挖掘平面几何图形中的隐含条件?是否注意到向量在解析几何中的运用? 六、立体几何 80、空间图形应注意的两个问题:一是根据空间图形正确识别空间元素点、线、面的位置关系,二是要注意改变视角,能正确判定空间图形位置、形状及存在的数量关系,寻找解题思路或途径. 81、立体几何虽是平面几何的继续和发展,但并不是所有平面几何的结论都能无条件地推广到立体几何中. 82、由几何体(或直观图)作三视图,及由三视图还原几何体(或画出相应的直观图)你熟练吗?注意到线的虚实了吗? 83、立体几何中,平行、垂直关系可以进行以下转化:线‖线 线‖面 面‖面,线⊥线 线⊥面 面⊥面.这些转化的依据是什么? 84、异面直线所成角的范围是什么?线面角的范围是什么?二面角的范围是什么? 85、求作线面角的关键是找直线在平面上的射影. 86、作二面角的平面角的方法有哪些?(利用定义、三垂线法、作二面角的棱的垂面).这些方法你掌握了吗? 87、立体几何的求解问题分为“作”、“证”、“算”三个部分,你是否只重视了“作”、“算”,而忽视了“证”这一环节? 89、用向量研究角的有关问题时,是否弄清了向量夹角与图形角的关系? 90、用空间向量的坐标来解决立体几何题,要合理建系并且要建立右手直角坐标系,正确地写出需用点的坐标,注意向量表达与图形表达的转化. 、你是否记住了以下结论: ①从点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面BOC上的射影在∠BOC的平分线上. ②已知长方体的体对角线与过同一顶点的三条棱所成的角分别为,则有cos2α+cos2β+cos2γ=2. ③正方体、长方体的外接球的直径等于其体对角线的长. 七、排列、组合、二项式定理、概率统计 92、选用两个原理的关键是什么?(分类还是分步) 93、排列数、组合数的计算公式你记住了吗?它们的条件限制你注意了吗? 94、组合数有哪些性质?在杨辉三角中如何体现? 95、排列与组合的区别和联系你清楚吗?解决排列组合问题的常用方法你掌握了吗?解综合题可别忘了“合理分类、先选后排”啊! 96、排列应用题的解决策略可有直接法和间接法;对附加条件的组合应用题,你对“含”与“不含”,“至多”与“至少”型题一定要注意分类或从反面入手啊! 97、求二项展开式特定项一般要用到二项式的展开式的通项. 98、二项式定理的主要应用有哪些? 99、二项式定理(a+b)n与(b+a)n展开式上有区别吗?定理的逆用熟悉吗? 100、求二项(或多项)展开式定项的系数你会用组合法解决吗? 101、“二项式系数”与“项的系数”是两个不同的概念.求系数问题常用赋值法!求展开式中系数的项(或系数的项)的方法你熟悉吗?千万要注意解法技巧的变形啊! 102、二项式展开式各项的二项式系数和、奇数项的二项式系数和、偶数项的二项式系数和,奇次(偶次)项的二项式系数和你能区分开吗?它们的项的系数和呢? 103、四种常见的概率类型你掌握了吗?是否注意到每种概率应用的前提? 104、在用几何概型求概率时你是否能正确选择几何量?(线段长度、区域面积、几何体体积) 105、求随机概率的问题常用的思考方法是:正向思考时要善于将复杂的问题进行分解,解决有些问题时还要学会运用逆向思考的方法.是否注意到“至多”、“至少”概率的求法有分类、间接两种. 106、概率应用题你有写“答语”的习惯吗?解题的步骤完整吗?求分布列的解答题你能把步骤写全吗?求期望、方的步骤齐全吗? 107、记住常用的三个分布.二项分布的期望和方公式是什么? 108、正态密度曲线有怎样的性质?你会利用它的对称性求概率吗? 109、抽样方法有哪些?它们具有怎样的联系与区别? 110、用样本估计总体的方法有几种?具体是什么? 111、统计图有几种?频率分布直方图、条形图中纵轴的意义相同吗?对各种统计图你能正确应用吗? 112、样本的数字特征有几种?你能正确应用它们对总体进行估计吗? 113、变量间的关系包括哪几种?你能应用最小二乘法求线性回归方程、并作出预测吗? 114、性检验的基本思想是什么?如何根据K2的值判断两个变量存在关系的可能性的大小? 八、算法初步、复数 115、你能正确区分、使用各种框图吗?(起止框、输入输出框、处理框、判断框) 116、对各种算法语句你能正确理解和使用吗?是否熟悉赋值语句与数列的关系? 117、在循环结构中能正确判断循环的次数吗? 118、对所给的程序框图、程序,你能读懂吗?能给出正确的运算结果吗?能正确判断缺少的条件吗? 119、你熟悉复数与实数的关系吗?是否记住实数、虚数、纯虚数定义中的条件? 120、复数不能比较大小.记住复数相等的定义,会利用复数相等把复数问题实数化. 121、记清复数的几何意义.记住复数、复平面内的点、向量之间建立了一一对应的关系. 122、你能熟练进行复数的加、减、乘、除运算吗?这是高考的常考题型! 九、基本方法 123、解答选择题的特殊方法是什么?(估算法、特值法、特征分析法、直观选择法、逆推验证法) 124、解答开放型问题时,透彻理解问题中的新信息,这是准确解题的前提. 125、解答多参型问题时,关键在于恰当地引出参变量,设法摆脱参变量的困扰.这当中,参变量的分离、集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性方法. 126、在分类讨论时,要做到“不重不漏,层次分明”,要进行总结. 128、换元的思想,逆求的思想,从特殊到一般的思想,方程的思想,整体的思想等,在解题中你会考虑吗? 129、在解答题中,如果要应用教材中没有的重要结论,则在解题过程中要给出简单的证明. 想要学好数学,关键在于多练习,熟能生巧,做的题目多了,自然就有了经验,下面是由我为大家整理的“2022高中学考知识点总结数学”,仅供参考,欢迎大家阅读本文。 高中数学知识点 立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。 分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等。 表示:用各顶点字母,如五棱台 几何特征: ①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。 几何特征: ①底面是全等的圆; ②母线与轴平行; ③轴与底面圆的半径垂直; ④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。 几何特征: ①底面是一个圆; ②母线交于圆锥的顶点; ③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征: ②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征: ①球的截面是圆; ②球面上任意一点到球心的距离等于半径。 2、 空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体直观图——斜二测画法 斜二测画法特点: ①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 数学知识点2 直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 ②过两点的直线的斜率公式: 注意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 数学知识点3 幂函数 定义: 形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。 性质: 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 指数函数 (1)指数函数的定义域为所有实数的,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (6)函数总是在某一个方向上无限趋向于X轴,相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数。 奇偶性 定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 高中数学知识点总结及公式 1.的有关概念。 1)(集):某些指定的对象集在一起就成为一个(集).其中每一个对象叫元素。 注意:①与的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个)。 2)的表示方法:常用的有列举法、描述法和图文法。 3)的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则A B(或A B); 2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 ) 3)交集:A∩B={x| x∈A且x∈B} 4)并集:A∪B={x| x∈A或x∈B} 5)补集:CUA={x| x A但x∈U} 3.弄清与元素、与的关系,掌握有关的术语和符号。 4.有关子集的几个等价关系 ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB; ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。 5.交、并集运算的性质 ①A∩A=A,A∩B=B∩A;②A∪A=A,A∪B=B∪A; ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB; 6.有限子集的个数:设A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 拓展阅读:高中数学学习方法 1.首先就是要熟悉基本的解题步骤和方法,平时的练习和考试是一样的,要注意每个步骤,解题的过程是一个思维过程,注意了高度集中不要让自己的思维跑偏,而我们一般是沿着自己的思维,并且按照熟悉的步骤就可以很容易找到. 2.在拿到题时认真的审题,这点很重要,直接决定你答题的正确性和速度,如果你的知识具备了,题审错了,会让你走很多弯路,浪费很多时间,并且还会做错,得不偿失,所以审题时很重要,读懂每个已知的条件,分析问题和条件之间的联系,然后在进行思维运算,开始答题. 3.平时认真的做好归纳总结,这样讲题型分类,考试时会很容易。往往同类型题会有共同点甚至给你同样的思维,能够使你对解题方法进行很好的归纳总结,然后起到举一反三的效果,这样当你在看到相同类型的题时,可以大大的缩短答题的时间. 4.学会画图这点也很重要,人的大脑对图的记忆比文学好,所以学会利用已知条件来设场景,画出对应的图,这样非常有利于解题,而且正确率是比较高的,一般情况题都来源于生活中,来解决实际问题,这样也有助于你将课本知识和实际联系在一起 高中数学课本中,空间几何体角与距离这部分内容是教学的难点,下面是我给大家带来的数学必修2空间几何体中的夹角和距离知识点,希望对你有帮助。 一、距离 空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的。 求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。 1、两条异面直线的距离 两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度。 2、点到平面的距离 (1)”一找二证三求”,三步都必须要清楚地写出来。 (2)、等体积法。 3、直线与平面的距离 一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离; 5、直线方程:高考时不单独命题,易和圆锥曲线结合命题。4、平行平面间的距离 两个平行平面空间几何体中的夹角和距离知识点的公垂线段的长度,叫做两个平行平面的距离。 二、线面垂直 空间中的各种角包括异面直线所成的角,直线与平面所成的角和二面角,要理解各种角的概念定义和取值范围,其范围依次为(0°,90°]、[0°,90°]和[0°,180°]。 1、两条异面直线所成的角 求法:①、先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;②、通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是(0,90°],向量所成的角范围是(0,180°],如果求出的是钝角,要注意转化成相应的锐角。 2、直线和平面所成的角 求法:“一找二证三求”,三步都必须要清楚地写出来。除特殊位置外,主要是指平面的斜线与平面所成的角,根据定义采用“射影转化法”。 3、二面角的度量是通过其平面角来实现的 解决二面角的问题往往是从作出其平面角的图形入手,所以作二面角的平面角就成为解题的关键。通常的作法有: (Ⅱ)利用三垂线定理或逆定理; (Ⅲ)自空间一点作棱垂直的垂面,截二面角得两条射线所成的角,俗称垂面法。此外,当作二面角的平面角有困难时,可用射影面积法解之,cosθ=S'/S,其中S为斜面面积,S′为射影面积,θ为斜面与射影面所成的二面角。 三、等角定理 如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。 平面几何是在平二、函数、导数、不等式面内研究图形的性质,是立体几何、解析几何的基础; 立体几何是在三维空间中研究图形、物体的性质; 解析几何是在坐标系中通过点、线的坐标化来简化问题,使之易于研究,将具体的点和线段化为抽象的数学符号,它是建立在平面几何和坐标系的基础上的。 总的来说,平面几何考查的是平面思维,立体几何考查平面① 射影等,斜线段等几何和空间想象能力,而解析几何考查平面几何和坐标系。三者可以理解为:平面几何—立体几何、平面几何—解析几何。还有就是向量了,它在所有几何学中应用是很广的,用它来解决问题很方便。 要学好高中几何,要注意上课认真听讲,读懂课本内容,下课自己要好好复习,将图形好好认识并要做好每一道题,从中得到理解。关键有两个方面: 1、图形方面:不但要学会看图,而且要学会画图,通过看图和画培养自1、中的元素具有确定性、互异性、无序性.己的空间想象能力是非常重要的。 2、语言方面:很多同学能把问题想清楚,但是一落在纸面上,不成话。需要记的一句话: 几何语言最讲究言之有据,言之有理。也就是说没有根据的话不要说, 不符合定理的话不要说。 至于怎样证明立体几何问题可从下面几个角度去研究: 1、把几何中所有的定理分类:按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。 如:平行于同一条直线的两条直线平行,既可以把它看成是两条直线平行的性质定理,也可以把它看 成是两条直线平行的判定定理。 又如如果两个平面平行且同时和第三个平面相交,那么它们的交线平行。它既是两个平面平行的性质定理 又是两条直线平行的判定定理。这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线 和平面垂直,可以用下面的定理: (1)直线和平面垂直的判定定理 (2)两条平行垂直于同一个平面 (3)一条直线和两个平行平面同时垂直 2、明确自己要做什么: 一定要知道自己要做什么!在证明之前就要设计好路线,明确自己的每一步的目的,学会大胆设,仔细推理。 3学会抽象化思考多记公式和特殊图线图形的性质,动手做一些实物模型,如直线、平面、正方体、长方体等等。通过对模型中点、直线和平面之间位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力,想象这些空间图形画在纸上就是什么模样;同时要掌握画直观图的规则,掌握实践、虚线的使用方法,为正确地画图打好基础。培养自己的画图能力,可从简单的图形(如直线和平面的各种位置关系)、简单的几何体(如正方体)画起。由对照模型画图,逐步过渡到没有模型摆在面前,也能正确地画出空间图形的直观图,而且能由直观图想象出空间图形。在这个“想图、画图、识图”的过程中,不仅空间想象能力得到提高,抽象思维能力也可以得到很大提高。 4 立体几何的研究方法与平面几何的研究方法类似,即依据公理,运用逻辑推理方法,这就要求初学立体几何的学生要重视逻辑推理能力的培养。我们在教学中发现高一的新生在立体几何证明的证明过程中,常常出现以下两种错误:一个是由学生逻辑推理能力而导致和证题思路上的错误;另一个是由学生语言表达能力而导致的证题的书面表达上的错误例如,立体几何课本3页公理3的推论1:“经过一条直线和这条直线外的一点,有且只有一个平面。”学生们常常这样来证明这个推论: A是直线a外一点。在 a上任取两点 B、C ,则A、B、C三点不共线。根据公理3,经过不共线三点 A、B、C有且一个平面a,又点B、C都在平面a内,所以根据公理1,直线a在平面a内,即过直线a和点A有且只有一个平面。 当然,这样证明是不全对的,事实上,上面的证明过程中有这样一个逻辑错误:即把过A、B、C三点的平面构成的与过直线a和点A的平面构成的先承认是两个相等的,从而由个有且只有一个元素导出第二个有且只有一个元素。正确的逻辑推理应该是这样的:先证明上面的第二个包含于个,从而由个有且只有一个元素导出第二个最多有一个元素;其次证明第二个确实有一个元素,得出第二个有且只有一个元素的结论。 由此不难看出要学好立体几何的基础知识,必须要注重逻辑推理能力的培养。为此,初学立体几何的学生要重视看起来简单的那些基本概念、公理和定理,不仅要理解它们,还要熟练地记忆它们,掌握它们之间的联系。同时对基础的题目必须从一开始就认真地书写证明(或求解)过程,包括已知、求证、证明、作图等等,证明过程要特别注意所运用的公理、定理的条件要摆够、摆准。另外,对课本上定理的证明必须熟记,掌握定理证明的逻辑推理过程及其渗透的数学方法。 5 要学好立体几何的基础知识,还要充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么不变,有什么联系。 比如三垂线定理可以把平面内两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。 再比如异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距、面面距三者之间可互相转化。 又比如异面直线可由平面几何中的平行直线转化而得:只要把两条平行直线中的一条旋转使它与原平行线确定的平面相交即可(这个过程涉及到一个角度问题)。异面直线还可由平面几何中的相交直线平移而得,只须把两条相交直线中的一条从原相交直线确定的平面中平行地拉出来(这个过程涉及到一个距离问题)。事实上,整个平面几何所研究的点和直线之间的三种位置关系都可以用角和距离描述。当平面图形由于多加了一个“面”而转化为立体图形,出现点、直线、平面之间的六种位置关系时,不难发现,我们仍然可以用角和距离来描述。 由于平面几何是立体几何的一部分,空间的点、线、面如果都在同一平面内,则两面平面几何中的结论依然成立。反过来,平面几何中的正确命题在立体几何中是否依然正确呢?当然不一定正确(比如有三个直角的平面四边形一定是矩形,但有三直角的空间四边形一定不是矩形),所以我们提醒初学立体几何的学生们,要在学习过程中注意平面几何与立体几何及立体几何本身各元素的位置关系的区别和联系,及时进行对比和总结,掌握。 一、空间几何体的结构特征 1、多面体——由若干个平面多边形围成的几何体。 2、柱,锥,台,球的结构特征 2.1、棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 2.2、圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2.3、棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 2.4、圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 2.5、棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台。 2.6、圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。 2.7、球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球。 二、空间几何体的三视图与直观图 1、投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2①上下底面是两个圆;、三视图——正视图:侧视图:俯视图:是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等。 知识点一:空间几③具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件。何体概念。 知识点二:多面体概念,多面体的面、棱和顶点。 知识点三:旋转体概念,轴。 知识点四:棱柱、棱锥、棱台结构特征。 知识点五:圆柱、圆锥、圆台结构特征。 知识点六:球结构特征。 知识点七:简单组合体的结构特征。 空间几何体的'三视图和直观图知识点汇总。 知识点一:中心投影与平行投影。 知识点二:空间几何体的三视图,正视图、侧视图和俯视图。 知识点三:空间几何体的直观图,斜二测画法。 空间几何体的表面积与体积知识点汇总。 知识点一:柱体、台体、锥体的表面积。 知识点二:柱体、台体、锥体的体积。 知识点三:球体的表面积和体积。 高考数学知识点如下: 1、与函数的概念(部分知识抽象,较难理解)。 2、基本的初等函数(指数函数、对数函数)。 3、函数的性质及应用(比较抽象,较难理解)。 4、立体几何,证明垂直(多考查面面垂直)、平行、求解主要是夹角问题,包括线面角和面面角。 6、圆方程。 7、算法初步,高考必考内容,5分(选择或填空)。 8、统计。 9、概率空间几何体知识点总结如下:。 10、三角函数(图像、性质、高中重难点)必考大题15-20分,经常和其他函数混起来考查。 11、平面向量,高考不单独命题,易和三角函数、圆锥曲线结合命题。 12、解三角形,(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右。 13、数列,高考必考17-22分。 14、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。 数学能力的提高离不开做题,”熟能生巧“这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。 1.高二数学必修二下册知识点 立体几何 1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 能够用斜二测法作图。 2.空间两条直线的位置关系:平行、相交、异面的概念; 会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。 3.直线与平面 ①位置关系:平行、直线在平面内、直线与平面相交。 ②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。 ③直线与平面垂直的证明方法有哪些? ④直线与平面所成的角:关键是找它在平面内的射影,范围是 ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理.三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线. 4.平面与平面 (1)位置关系:平行、相交,(垂直是相交的一种特殊情况) (2)掌握平面与平面平行的证明方法和性质。 (3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。 (4)两平面间的距离问题→点到面的距离问题→ (5)二面角。二面角的平面交的作法及求法: ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形; ②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。 ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法 2.高二数学必修二下册知识点 排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!n2!...nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 3.高二数学必修二下册知识点 证明不等式常用方法 (1)比较法:作比较: 作比较的步骤: ⑵变形:对进行因式分解或配方成几个数(或式)的完全平方和。 ⑶判断的符号:结合变形的结果及题设条件判断的符号。 注意:若两个正数作比较有困难,可以通过它们的平方来比较大小。 (2)综合法:由因导果。 (4)反证法:正难则反。 (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。 放缩法的方法有: ⑴添加或舍去一些项, ⑵将分子或分母放大(或缩小) ⑶利用基本不等式, (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。 (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式; 4.高二数学必修二下册知识点 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。 5.高二数学必修二下册知识点 一、简易逻辑 1.推理的定义:根据几个或者一个已知的事实(或者设)得出一个判断的思维方式叫做推理.它由两部分组成,一部分是已知事实(或者设),这叫做前提,一部分是由已知判断推出的新判断,叫做结论,推理可以写成“如果......,那么……”“因为……,所以……”“根据……,可知……”等等.其次还需要注意推理与证明重难点总结。 2.归纳推理:根据某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简而言之,归纳推理是有部分到整体、由个别到一般的推理。 3.例题:简易逻辑及充要条件例题 二、直线的斜角与斜率 1.直线的方程:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上点的坐标都是这个方程的解,这时,这个方程就叫做这个直线方程,这条直线叫做这个方程的直线。 2.直线的倾斜角:对于一条与x轴相交的直线,如果把x轴绕着焦点按逆时针方向旋转到和直线重合时,所转的最小正角记为α,那么α就叫做直线的倾斜角,它的取值范围为[0,π). 3.直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k表示,即k=tanα,由正切函数的单调性可知倾斜角不同的直线,其斜率也不同. 4.例题:如何求直线斜率的取值范围 三、排列组合 排列与组合是高二数学的重要内容,高考会保持运用分类、分布计数原理及排列、组合解决实际或数学问题的思路。 1.排列:从n个不同元素中取出m(m≤n)个元素的所有排列的个数,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 2.排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用Amn表示. 3.组合:从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。 4.组合数:从n个不同元素中取出m(m≤n)个元素的所有组合个数,叫做从n个不同元素中取出m个元素的组合数,用Cmn表示。2022高中学考知识点总结数学
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。数学必修2空间几何体中的夹角和距离知识点
高中数学几何部分有哪些重要的知识点?
怎么学习高中的空间几何?尤其是证明题,有没有知识点或方法的总结归纳?
空间几何体知识点汇总。空间几何体知识点总结
Ⅰ【与平行类似 ①定义、②判定、③性质→点面距离、】高一数学空间几何体知识点归纳
(A)五面体高考数学知识点
88、会求直线的方向向量、平面的法向量吗?如何利用向量法求异面直线所成的角、线面角、二面角的大小?高二数学必修二下册知识点
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。