八年级上册数学期末必考题型有哪些?

八年级上册数学期末必考题型如下

八年级上册数学期末必考点 八年级上册数学期末必考点总结八年级上册数学期末必考点 八年级上册数学期末必考点总结


八年级上册数学期末必考点 八年级上册数学期末必考点总结


一、三角形的定义

由不在同一条直线上的三条线段顺次首尾相接所组成的图形叫做三角形。

二、三角形的分类

1、按角分:锐角三角形;直角三角形;钝角三角形。

2、按边分:不等边三角形;等腰三角形;等边三角形。

三、角平分线

三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

四、中线

连接一个顶点与对边中点的线段叫做三角形的中线。

五、高

从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。注意:三角形的角平分线、中线和高都有三条。

六、三角形的三边关系

三角形的任意两边的和大于第三边,任意两边的小于第三边。

八年级数学上册知识点总结

失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

一、勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

二、证明

1、对事情作出判断的 句子 ,就叫做命题。即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

(2)三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系

(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤

(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

八年级上册数学知识点

(一)运用公式法

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方公式

平方公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方,等于这两个数的和与这两个数的的积。这个公式就是平方公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

初二数学知识点归纳

章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

八年级数学上册知识点 总结 相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 初二数学上册知识点总结

★ 八年级数学知识点整理归纳

★ 八年级数学上册知识点归纳

★ 初二上册数学知识点归纳总结

★ 初二数学上册知识点

★ 八年级上册数学的知识点归纳

★ 初二数学上册知识点总结

★ 初二数学上册知识点总结人教版

★ 初二数学知识点归纳上册人教版

八年级上册数学期末必考题型有哪些?

(一)简单的三角形全等证明题

这类型的题是对八年级学生推理论证和解题问题能力的最基本要求,所以这类型题可以说是八年级期中考必考知识点。

(二)中等难度三角形综合证明题

要想解决中等难度的全等三角形证明题,一要熟记学过的所有定理和性质,建立完善的知识体系;二要熟悉常用辅助线的作法。

(三)作图题

作图主要要求会作轴对称图形,会作角平分线与线段的垂直平分线,还要会作全等三角形。

(四)第十一章《三角形》的基本概念题

其它几题都是比较基础的,在这里就不再赘述。

(五)第十二章《全等三角形》基本概念题

在三角形中求线段长或者求角度数的时候,除了数量掌握相关的定理和性质,还要会等量代换和应用整体代换。

(六)第十三章《轴对称》基本概念题

轴对称这章有两个很重要的定理性质,一个是等腰三角形的三线合一定理,另一个是直角三角形中30度所对的直角边是斜边的一半。

期末数学八年级上册知识点归纳北师大版

1.数学八年级上册知识点归纳北师大版 篇一

一、轴对称图形

1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。

3、轴对称图形和轴对称的区别与联系。

4、轴对称的性质。

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线

1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2、线段垂直平分线上的点与这条线段的两个端点的距离相等。

3、与一条线段两个端点距离相等的点,在线段的`垂直平分线上。

三、用坐标表示轴对称小结

1、在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。关于y轴对称的点横坐标互为相反数,纵坐标相等。

2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。

2.期末数学八年级上册知识点归纳北师大版 篇二

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

3.期末数学八年级上册知识点归纳北师大版 篇三

(一)运用公式法

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2—b2=(a+b)(a—b)

a2+2ab+b2=(a+b)2

a2—2ab+b2=(a—b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方公式

平方公式

(1)式子:a2—b2=(a+b)(a—b)

(2)语言:两个数的平方,等于这两个数的和与这两个数的的积。这个公式就是平方公式。

(三)因式分解

1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2、因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a—b)2=a2—2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2—2ab+b2=(a—b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者)的平方。

把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

4.期末数学八年级上册知识点归纳北师大版 篇四

一次函数

(1)正比例函数:一般地,形如y=kx(k是常数,k>0)的函数,叫做正比例函数,其中k叫做比例系数;

(2)正比例函数图像特征:一些过原点的直线;

(3)图像性质:

①当k>0时,函数y=kx的图像经过、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

(4)求正比例函数的解析式:已知一个非原点即可;

(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫函数;

(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线;

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)

②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

(10)求一次函数的解析式:即要求k与b的值;

(11)画一次函数的图像:已知两点;

用函数观点看方程(组)与不等式

(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

5.期末数学八年级上册知识点归纳北师大版 篇五

四边形

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定

1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

矩形判定定理:

1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

八年级上册数学期末考试考点知识点整理

八年级上册数学期末考试考点知识点整理1

第十二章 平面直角坐标系小结

平面内点的坐标特征

1.各象限内点P(a,b)的坐标特征:

象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0.(说明:一.三象限,横.纵坐标符号相同,即ab>0;二.四象限,横.纵坐标符号相反即ab<0。)

2.坐标轴上点P(a,b)的坐标特征:

x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0

(说明:若P(a,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a,b)在坐标轴上。)

3.两坐标轴夹角平分线上点P(a,b)的坐标特征:一.三象限:a=b;二.四象限:a=-b。

对称点的坐标特征

点P(a,b)关于x轴的对称点是(a,-b);

关于y轴的对称点是(-a,b);

关于原点的对称点是(-a,-b)

点到坐标轴的距离

点P(x,y)到x轴距离为∣y∣,到y轴的距离为∣x∣。

点的平移坐标变化规律

(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;

(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。

坐标平面内,点P(x,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x-a,y);点P(x,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。

(说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。简记为右加左减,上加下减)

第十三章 一次函数

确定函数自变量的取值范围

1.自变量以整式形式出现,自变量的取值范围是全体实数;

2.自变量以分式形式出现,自变量的取值范围是使分母不为0的数;

3.自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;

自变量以奇次方根形式出现,自变量的取值范围是全体实数。

4.自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。

说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分;

(2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义。

八年级上册数学期末考试考点知识点整理2

考点一:三角形

三角形中的考点分为三类:一类是一般的三角形,一类是等腰三角形,一类是等边三角形。

一般的三角形常考的是三角形的面积,周长相关的计算,以及三角形全等相关的证明。三角形的面积为1/2乘以底乘以高,三角形的周长为三个边长之和。证明三角形全等的方法:SSS(三个边对应相等的两个三角形全等),SAS(两边及其夹角对应相等的两个三角形全等),AAS(两个角以及其中一个角对应的边相等的两个三角形全等),ASA(两角及其夹边对应的两个三角形对应相等的两个三角形全等)。

等腰三角形:两个边长或者两个角相等的三角形为等腰三角形。等腰三角形底边上的高和中线还有角平分线三线是重合的,考试的时候,经常构造这个辅助线进行相关的证明。

等边三角形:三个边都相等的三角形为等边三角形,等边三角形的各个角都是60度,各个边长都相等。

考点二:多边形

多边形的内角和:180(n-2),n为多边形的变数。经常给出度数范围,求边长,常用的方法是设多边形的边数为n,列不等式,求出关于边数n的范围,取整数即可。如一个多边形的'内角和大于850度小于1000度,求多边形的边数。

列不等式:850<180(n-2)<1000,解的:85/18+2

多边形的对角线的个数:n(n-3)/2

考点三:轴对称

轴对称图像经常会结合全等进行相关的考核,主要是数形结合的题目,后续在模拟试题中会提到,你只要知道关于某条线能够完全重合的图形为轴对称图形即可,如等腰三角形,正方形等。

考点四:整式

整式必考的考点为代数式相关的求值,平时学生们都加以训练了,只要考试认真按照四则运算进行相关的求解即可,先化简,再代入值求解即可。

考点五:因式分解

因式分解是必考的内容之一,因式分解答题步骤我们来为大家总结一下:首先看式子中是否有公因数,有公因数的一定要提取公因数,然后,看是否能够利用平方公式或者完全平方公式,不能的话,考虑使用十字相乘的方法进行分解。具体的分解技巧见前面课程中提到的因式分解解题技巧。

考点六:分式

分式考点比较单一,首先是分式的计算,和整式是一样的方法,其次是分式方程解应用题,求解完应用题一定要代入原来的分式方程中进行验证,判断分母是否为0,即解方程结束,要加上一句话:经验证x等于某某数值为原分式方程的解。相关的解题注意事项,后续在期末试题中我们会给出详解的哦。

初二数学上册知识点归纳

初二期末考试即将来临,为了能让同学们更加高效的复习,下面我整理了初二数学上册知识点归纳,供各位考生参考。

三角形知识概念

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:

(1)三角形的内角和:三角形的内角和为180°

(2)三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于·180°

(4)多边形的外角和:多边形的外角和为360°

(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。

位置与坐标

1、确定位置

在平面内,确定一个物体的位置一般需要两个数据。

2、平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。

3、轴对称与坐标变化

关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

数据的分析

1、平均数

①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最多的那个数据叫做这组数据的众数。

③平均数、中位数和众数都是描述数据集中趋势的统计量。

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

⑥各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的,(称为极),就是刻画数据离散程度的一个统计量。

②数学上,数据的离散程度还可以用方或标准刻画。

③方是各个数据与平均数的平方的平均数。

④其中是x1,x2.....xn平均数,s2是方,而标准就是方的算术平方根。

⑤一般而言,一组数据的极、方或标准越小,这组数据就越稳定。