半导体有哪些 半导体有哪些产品
半导体有哪些
半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。
半导体有哪些 半导体有哪些产品
半导体有哪些 半导体有哪些产品
如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、等,而硅更是各种半导体材料中,在商业应用上有影响力的一种。
分类:
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。
此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。
扩展资料:发展历史:
半导体的发现实际上可以追溯到很久以前。
1833年,英国科学家电子学之父法拉第发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。
不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏应,这是被发现的半导体的第二个特征。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。
半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到11年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。
很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。
参考资料:
半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。
如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、等,而硅更是各种半导体材料中,在商业应用上有影响力的一种。
常见的半导体材料有硅(si)、锗(ge),化合物半导体,如(gaas)等;掺杂或制成其它化合物半导体材料,如硼(b)、磷(p)、锢(in)和锑()等。其中硅是最常用的一种半导体材料。
有以下共同特点:
1.半导体的导电能力介于导体与绝缘体之间
2.半导体受外界光和热的时,其导电能力将会有显著变化。
3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。
锗、硅、硒、及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。
半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。
半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。
把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。
半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。
山桃红花满上头,蜀江春水拍山流。
常见的半导体材料有哪些?
锗、硅、硒、及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。
半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。
半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。
把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。
半导体材料有哪些
在可预见的将来,单晶硅仍是电子工业的材料,但这位半导体家族新秀已迅速成长为仅次于硅的重要半导体电子材料。在当代光电子产业中发挥着重要的作用,其产品的50%应用在军事、航天方面,30%用于通信方面,其余的用于计算机和测试仪器。
材料的特殊结构使其具备吸引人的优良特性。根据量子力学原理,电子的有效质量越小,它的运动速度就越快,而中电子的有效质量是自由电子质量的1/15,只有硅电子的1/3。用制成的晶体管的开关速度,比硅晶体管快1~4倍,用这样的晶体管可以制造出速度更快、功能更强的计算机。因为的电子运动速度很高,用它可以制备工作频率高达1010赫兹的微波器件,在卫星数据传输、通信、军用电子等方面具有关键性作用。实际上,以为代表的Ⅲ—Ⅳ族半导体,其特点是其光电特性,即在光照或外加电场的情况下,电子激发释放出光能。它的光发射效率比其他半导体材料高,用它不仅可以制作发光二极管、光探测器,还能制作半导体激光器,广泛应用于光通信、光计算机和空间技术,开发前景令人鼓舞。
与任何半导体材料一样,材料对于杂质元素十分敏感,必须精细纯化。和硅、锗等元素半导体不同的是它还要确保准确的化学配比,否则将影响材料的电学性质。
基于以上原因,单晶的制备工艺复杂,成本高昂。我国曾在人造卫星上利用微重力条件进行单晶的生长,取得了成功。此外,薄膜外延生长技术,可以控制单晶薄膜的厚度和电阻率,在制备半导体材料和器件中越来越受到重视。
短短十几年,仅美国研究和开发的产品已逾千种。根据90年代末集成电路会议的预测,集成电路的市场销售额将每年翻一番,形成数十亿美元的规模。及其代表的Ⅲ—Ⅳ族化合物半导体家族均身怀绝技,有待于进一步开发。
最早的半导体材料以硅(包括锗)为主。随着信息发展,人们需求的增加,出现了以(GaAs)等为代表的半导体材料,算是第二代半导体材料吧。现主要的半导体材料有金属氧化物(LDMOS),碳化硅(SiC)和硅(Si)基做基底的氮化物。SiC是在历史上研究得较早的一种半导体,但由于它的晶相很多,单晶生长困难,成本高。氮化镓是最早被利用的、并且研究得最充分的第三代半导体。它有很强的键强度,决定了它的材料强度大,耐高温,耐缺陷,不易退化,在器件应用上有很多优点。尽管以前氮化镓与LDMOS相比价格过高,但是MACOM公司的最新的硅基氮化镓技术(MACOM GaN)使得二者成本结构趋于相当。
半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体 在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、
Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体 分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。②Ⅲ-Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In和V族元素P、As、Sb组成,典型的代表为GaAs。它们都具有闪锌矿结构,它们在应用方面仅次于Ge、Si,有很大的发展前途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和Ⅵ族元素S、Se、Te形成的化合物,是一些重要的光电材料。ZnS、CdTe、HgTe具有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素Cu、Ag、Au和 Ⅶ族元素Cl、Br、I形成的化合物,其中CuBr、CuI具有闪锌矿结构。⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族元素 S、Se、Te形成的化合物具有的形式,如Bi2Te3、Bi2Se3、Bi2S3、As2Te3等是重要的温电材料。⑥第四周期中的B族和过渡族元素Cu、 Zn、Sc、Ti、V、Cr、Mn、Fe、Co、Ni的氧化物,为主要的热敏电阻材料。⑦某些稀土族元素 Sc、Y、Sm、Eu、Yb、Tm与Ⅴ族元素N、As或Ⅵ族元素S、Se、Te形成的化合物。 除这些二元系化合物外还有它们与元素或它们之间的固溶体半导体,例如Si-AlP、Ge-GaAs、InA
s-InSb、AlSb-GaSb、InAs-InP、GaAs-GaP等。研究这些固溶体可以在改善单一材料的某些性能或开辟新的应用范围方面起很大作用。 三元系包括:族:这是由一个Ⅱ族和一个Ⅳ族原子去替代Ⅲ-Ⅴ族中两个Ⅲ族原子所构成的。例如ZnSiP2、ZnGeP2、ZnGeAs2、CdGeAs2、CdSnSe2等。族:这是由一个Ⅰ族和一个Ⅲ族原子去替代Ⅱ-Ⅵ族中两个Ⅱ族原子所构成的, 如 CuGaSe2、AgInTe2、 AgTlTe2、CuInSe2、CuAlS2等。:这是由一个Ⅰ族和一个Ⅴ族原子去替代族中两个Ⅲ族原子所组成,如Cu3AsSe4、Ag3AsTe4、Cu3SbS4、Ag3SbSe4等。此外,还有它的结构基本为闪锌矿的四元系(例如Cu2FeSnS4)和更复杂的无机化合物。 有机化合物半导体 已知的有机半导体有几十种,熟知的有萘、蒽、聚、酞菁和一些芳香族化合物等,它们作为半导体尚未得到应用。
非晶态与液态半导体 这类半导体与晶态半导体的区别是不具有严格周期性排列的晶体结构。
常见的半导体材料有硅(si)、锗(ge),化合物半导体,如(gaas)等;掺杂或制成其它化合物半导体材料,如硼(b)、磷(p)、锢(in)和锑()等。其中硅是最常用的一种半导体材料。有以下共同特点: 1.半导体的导电能力介于导体与绝缘体之间 2.半导体受外界光和热的时,其导电能力将会有显著变化。 3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。
锗、硅、硒、及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。
半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。
半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。
把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。
元素半导体材料是指由单体元素构成的半导体材料。
共有12种元素具有半导体性质:
硅、锗、硼、碲、碘及碳、磷、砷、硫、锑、锡的某种同素异形体。
收音机是的吧
半导体的种类都有哪些?
半导体按照材料种类可以分为以下几类:
硅(Si)半导体:硅半导体是最常见的一种半导体材料,应用范围非常广泛,例如制造集成电路、太阳能电池等电子元件。
(CdTe)半导体:半导体主要应用于制造太阳能电池和半导体探测器等。
氮化镓(GaN)半导体:氮化镓半导体具有高速开关能力和较高的工作温度,因此是制造高功率电子元件、高频应用和固态照明等领域的重要材料。
磷化镓(GaP)半导体:磷化镓半导体应用于光源和探测器等领域。
硫化铜(Cu2S)半导体:硫化铜半导体被广泛应用于制造太阳能电池、半导体激光器等电子元器件。
除此之外,还有氮化硅(Si3N4)、硒化铟(In2Se3)、氧化锌(ZnO)等其他半导体材料。每种半导体材料的特性和应用范围都有所不同,具体选择应根据实际需求决定。
半导体材料有哪些?
锗、硅、硒、及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。
半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。
半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。
把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。
锗、硅、硒、及许多金属氧化物和金属硫化物等物体,它们的导电能力介于导体和绝缘体之间,叫做半导体。
半导体具有一些特殊性质。如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等。
半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加。利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等。
把一块半导体的一边制成P型区,另一边制成N型区,则在交界处附近形成一个具有特殊性能的薄层,一般称此薄层为PN结。图中上部分为P型半导体和N型半导体界面两边载流子的扩散作用(用黑色箭头表示)。中间部分为PN结的形成过程,示意载流子的扩散作用大于漂移作用(用蓝色箭头表示,红色箭头表示内建电场的方向)。下边部分为PN结的形成。表示扩散作用和漂移作用的动态平衡。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。