单片机数字钟毕业中期检查表中的一个问题

1.数字钟的构成

电子钟相关毕业设计

cd4511引脚图及功能_cd4511引脚图及功能图cd4511引脚图及功能_cd4511引脚图及功能图


cd4511引脚图及功能_cd4511引脚图及功能图


(三) 六十进制电路

·数字电子钟的电路设计 (字数:9242,页数:22 )·数字电子钟的设计与制作 (字数:8017,页数:22 )·数字钟的设计 (字数:6208,页数:21 )·基于8051单片机的数字钟 (字数:21638,页数:50)·基于单片机的电子时钟控制系统 (字数:7935,页数:42 )·数字电路数字钟设计 (字数:4846,页数:21 )·电子闹钟设计 (字数:4094,页数:19 )·定时闹钟设计 (字数:5714,页数:24 )·智能定时闹钟设计 (字数:3826,页数:18 )·下棋定时钟设计 (字数:5290,页数:24 )·多功能数字钟设计与制作 (字数:13129,页数:34)·基于单片机的电子钟设计 (字数:7710,页数:24 )·基于单片机的数字电子钟设计 (字数:10301,页数:42)·基于Labview的虚拟数字钟设计 (字数:17457,页数:32)·电子日历钟 (字数:10677,页数:33)·数字钟的设计与制作 (字数:4922,页数:23 )·单片机数字钟设计 (字数:15355,页数:47)·基于单片机的数字钟设计 (字数:12541,页数:27)·单片机定时闹钟设计 (字数:8450,页数:24 )·万年历可编程电子钟控电铃 (字数:14371.页数:41)·数字定时闹钟设计 (字数:7770,页数:28 )·基于EDA技术的数字电子钟设计 (字数:12247,页数:32)·多功能时钟打点系统设计 (字数:8353,页数:31 )·智能音乐闹钟设计 (字数:10002,页数:37)·基于AT89S51单片机的数字电子钟设计 (字数:14560,页数:39)

熟悉数字钟的设计与制作.

这个肯定是你怎么想的,怎么写的就怎么来呗,这还要问人呀

用遥控器怎么实现调节功放的音量大小,用单片机吗?

5.校时电路

用单片机接收信号控制一个可以调音量的IC,再输入到功放里面,就可以了

2.设计体会

可以用单片机,也可以不用单片机。你可以用一个通用型的接收到,做一个接收信号的电路,只要收到信号,就将声响加高再到。

如果功放输出靠电阻调节,那么基本结构可以是

按键-发射--接收-单片6.整点报时电路机-数字电位器-功放

在交通灯设计电路中,74LS160和74LS138起什么作用?

5V电源.

在交通灯设计电路中七四,ls160和74ls138起什么作用?在交通灯设计电路中这两款啊,起到了交通信号灯的协调变换,交叉亮度的作用。

在交通灯设计电路中,74LS160和74LS138起作用,使开车的人要减速

题目一般采用10进制计数器如74HC290、74HC390等来实现时间计数单元的计数功能。本次设计中选择74HC390。由其内部逻辑框图可知,其为双2-5-10异步计数器,并每一计数器均有一个异步清零端(高电平有效)。内容

试设计一个用74LS138型译码器监测信号灯工作状态的电路。信号灯有红(A)、黄(B)、绿(C)三种,正常工作时,只能是

试设计一个用74LS138型译码器监测信号灯工作状态的电路。信号灯有红(A)、黄(B)、绿(C)三种,正常工作时,只能是红、或绿、或红黄、或绿黄灯亮,其他情况视为故障,电路报警,报警输出为1。

0000|2015-03-31

题目

查看

在交通灯设计电路中,74LS160和74LS138起保护作用。

与交通灯设计电路中的问题。真的没法给你解释。请这面的学者或者工程师才能把它搞清楚。

在交通灯设逻辑控制电路的原理图如图2.5.3所示,实现对输入的时基信号进行变换,转化为清零信号和锁存信号。计电路中起到的作用是非常广广范。

这个两个起了个非常交通方面起了觉。非常的错误,这种错误是对交通的老乱是。有贡献的。

这种交通路灯设计中,他们的分别主要是红绿灯的时间不同。

在交通灯设计电路中74 ls 160和74 ls 138起什么作用问问交警或者门就知道了

单片机中用CD4511驱动数码管显示,通电后输出管脚电压应为多少?

2)计数法:使用“计数法”测量输入信号的频率,即通过系统内部给一个固定闸门时间,在闸门时间内用计数器对被测信号的边沿进行计数。若被测信号的频率为 ,内部闸门时间为T,测量所得计数值为 ,则可以根据公式(2)得到被测信号频率。

LE(5):0;/BI(4):1;/LT(3):1。测4511这些管脚,电压是否正确。

显示时,分,秒;

单片机如果用8051的P0口控制ABCD,请上拉排阻5.1K左右。

输出管脚应串联限流电阻后送共阴型数码管笔段,共阴数码管公共端接地。

检查上述问题,应该显示正另外,图(d)所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。常。如果正常,那么4511输出管脚电压不是0就是VCC。

数字频率计

设计原理及其框图

1)测周法:使用“测周法”测量输入信号的频率,在数字电路中可以利用被测信号的边沿来向电路内部提供一个闸门时间,在闸门时间内对系统内部提供的标准高频时钟信号的边沿进行计数。若被测信号的频率为 ,标准高频时钟信号的频率为 ,测量所得计数值为 ,则可以根据公式(1)得到被测信号频率。

说:自己动手,丰衣足食!

时序图如图1.1.1所示:

时序图如图1.1.2所示:

因为在数字电路中使用中小规模逻辑器件构建多位除法器电路十分困难,故选择计数法来测量被测信号的频率。通过设置内部闸门时间T为1s,计数器在闸门时间内的计数值 即为被测信号的频率值。

根据设计要求,数字频率计需测量100kHz的TTL电平信号,故数字频率计系统通过逻辑控制电路给计数器芯片提供1s闸门时间的计数信号,在1s计数完成之后锁存计数器所得到的计数值,并且通过译码器译码完成后通过数码管显示出来。锁存完成之后再向计数器提供清零信号,然后计数器再开始下一次的测量,系统整体设计框图如图1.2.1所示。

时基电路是由555定时器构成的多谐振荡器,电路原理图如图2.1.1所示。在接通电源之后,若此时555定时器的放电三极管T未导通,则电容C1通过电阻R1、R2进行充电,此时电路输出高电平。当电容C1上的电压达到 时,电路输出高电平,同时放电三极管T导通,电容C1通过电阻R2放电,电路输出低电平。当电容C1上电压下降至 时,电路输出翻转为高电平,同时放电三极管T截止,电路周而复始的工作,产生时基信号。

时基信号的高电平时间由电容充电时间决定,其计算公式如下:

时基信号的低电平时间由电容充电时间决定,其计算公式如下:

使用模拟示波器测量时基电路输出的时基信号,示波器测量结果如图2.1.2所示。根据示波器测量结果,时基信号的高电平时间约为1s,低电平时间约为120ms,时基信号满足设计要求。

根据设计要求,需测量100kHz的信号,使用计数法计数时,计数模块需在1s内可以计100k个边沿脉冲。且因为显示模块为数码管,为了让数码管方便显示,故每一个计数器芯片都应设计为模十计数器,同时为6个模十计数器级联才能符合设计要求。但是当计数模块为6个计数器级联时,若采用同步计数器,则可能会使得计数脉冲的负载加重,故选择采用异步十进制计数器芯片74LS90,其芯片的功能表如表2.2.1所示。

根据芯片功能表,当R9(1)、R9(2)保持低电平时,可以通过控制R0(1)、R0(2)两个引脚的电平高低来控制计数器工作状态。故通过逻辑控制电路向计数模块输入计数/清零信号,当该信号为高电平时,计数器计数。当该信号为低电平时,计数器清零。为了实现计数器之间的级联,将低位计数器的Q4输出端接至高位计数器的CKA输入端。当低位计数器的计数状态Q0Q1Q2Q3从1001变为0000即计数值从9变为0时,Q4会产生一个下降沿信号输入到高位计数器的CKA端,实现了低位计数器向高位计数器的进位功能。计数模块电路图如图2.2.2所示。

根据设计方案,译码显示模块需完成对计数器的计数结果进行锁存、译码并且通过数码管显示出来。为了减少芯片数量,故选择自带锁存功能的译码器芯片CD4511,CD4511的功能表如表2.3.1所示。

根据CD4511功能表,数码管应选择共阴极数码管。逻辑控制电路给译码显示模块输入锁存译码信号,即CD4511芯片的 和 始终保持着接高电平,给芯片的LE端输入译码显示信号。当译码显示信号为高电平时,译码显示模块锁存在上一个LE=0时的状态,显示在高电平来临之前的状态,当译码显示信号为低电平时,译码显示模块就会实时刷新显示状态。译码显示模块电路图如图2.3.2所示。

闸门电路需根据闸门信号来控制被测信号是否能够输入到计数模块。当闸门信号为高电平时,被测信号能够正常地通过闸门电路输入到计数模块,而当闸门信号为低电平时,被测信号被闸门阻碍,无法通过闸门电路。

根据闸门电路的设计要求,可以采用二输入与非门来实现闸门信号对被测信号是否输入到计数模块的控制。如表2.4.1为四2输入与非门74LS00的功能表。若闸门信号输入到与非门的A端,被测信号输入到与非门的B端,根据其功能表可知,当闸门信号为高电平时,闸门电路的输出信号与被测信号反相,当闸门信号为低电平时,闸门电路的输出信号一直保持高电平,阻碍被测信号输入计数模块。闸门电路的电路图如图2.4.2所示。

向闸门电路输入闸门信号和被测信号,使用模拟示波器观察输出信号与两个输入信号的波形图,如图2.4.3所示。

如图所示,个信号为闸门电路输出信号,第二个为被测信号,第三个为闸门信号。当闸门信号为高电平时,被测信号能够正常地通过闸门电路输出到计数模块,当闸门电路为低电平时,闸门电路输出保持为高电平,导致被测信号无法传输到计数模块,满足设计要求。

根据设计方案,逻辑电路需要根据输入的指导教师及职称:讲师时基信号,通过逻辑电路来产生控制计数模块的清零信号和控制译码显示模块的锁存信号,以此来实现数字频率计的自动测量和刷新功能。

译码显示模块需要通过逻辑控制电路产生一个译码信号来实现对译码显示模块的锁存数据和刷新数据的功能。译码信号是在计数模块测量完成之后,在清零信号有效之前进行锁存当前测量结果的数据,根据CD4511的功能表, 锁存信号是高电平有效,即在高电平时译码器对高电平来临之前的输入信号进行锁存并保持,在低电平时锁存失效,即根据输入信号的变化实时刷新输出信号。在逻辑控制电路内,为了让其基于时基信号产生锁存信号,采用了555构成的不可重复触发的单稳态触发器。

单稳态触发器的特点是电路有一个稳定状态和一个暂稳状态。在触发信号作用下,电路将由稳态翻转到暂稳态,但是暂稳态是一个不能长久保持的状态,由于电路中RC延时环节的作用,经过一段时间后,电路会自动返回到稳态,并在输出端获得一个脉冲宽度为 的矩形波。在单稳态触发器中,输出的脉冲宽度 ,就是暂稳态的维持时间,其长短取决于电路中电阻R和电容C的参数值。

由555构成的单稳态触发器电路及工作波形如图2.5.2所示。图中R,C为外接定时元件,输人的触发信号 接在555的低电平触发端(2脚)。稳态时,输出 为低电平,即无触发器信号( 为高电平)时,电路处于稳定状态且输出低电平。在 的负脉冲作用下,低电平触发端得到低于 ,输出 为高电平,放电管T截止,电路进入了暂稳态,定时开始。在暂稳态期间,电源→R→C→地,实现对电容的充电,充电时间常数T=RC, 按指数规律上升。当电容两端电压 上升到 后,6端为高电平,输出 变为低电平,放电三极管T导通,定时电容C充电结束,即暂稳态结束。电路恢复到稳态 为低电 平的状态。当第二个触发脉冲到来时,又重复上述过程。

根据上述555单稳态触发器电路原理, 从零电平上升到 的时间就是输出电压 的脉宽 ,其计算公式如公式5所示。

向逻辑控制电路输入时基信号,使用示波器测量其输入信号和输出的清零信号及锁存信号的波形图,如图2.5.4所示。锁存信号在时基信号的下降沿触发,一直持续到时基信号下一次下降沿之前才转化为低电平,清零信号与时基信号相比较发现清零信号在产生于时 基信号的上升沿,且比较短暂,仿真结果满足设计方案。

方波发生器的电路是以555多谐振荡器为模板,通过控制555多谐振荡器的电阻大小和电容大小来改变输出的矩形波的频率。具体的555多谐振荡器电路原理参见节2.2.1。根据设计要求,矩形波发生器的电路原理图如图2.6.1所示。

使用频率计测量矩形波发生器的输出频率,其频率与最小频率如图2.6.2所示。

在设计逻辑控制电路时,原本采取的设计方案是用单稳态触发器通过对时基信号的触发产生一个很窄的高电平脉冲信号作为清零信号,再对清零信号通过一个单稳态触发器产生一个很窄的低电平脉冲信号作为锁存信号。这个设计方案是基于所使用单稳态触发器为脉冲触发时,才可能使得单稳态触发器的暂稳态时间低于触发信号的脉冲宽度。但是所使用的单稳态触发电路是由555定时器芯片为核心搭建的,而根据555定时器芯片的功能表,如表3.1.1所示,555定时器搭建的单稳态触发电路为电平触发的单稳态电路,故修改设计方案,具体方案参考节2.5.1。

在制作频率计时,考虑到电路较为复杂,如果在洞洞板上搭建电路则在电路连接上会受限制,会使用大量的跳线或者杜邦线去连接电路,电路的稳定性和可靠性比较低。故采用设计PCB制作电路板的方式去实现电路。

但是在设计PCB时由于经验不足,在布线时将两个不同网络的线路和焊盘放的过近,导致所制作出来的电路板在有的地方发生了短路的现象,花费了大量的时间去排查和解决短路问题。在放置数码管与CD4511之间的限流电阻时,由于疏忽导致电阻的阻值不等,使得数码管亮度不均匀。

通过本次数字频率计课程设计,加强了我在数字电路方面的认识。在设计频率计的电路时,通过查找资料加深了对时序电路和逻辑电路的了解,同时也学会了如何去通过查阅芯片的数据手册来分析它的功能和建立时间、保持时间等一些参数,以此来选取符合设计功能的芯片。在电路的时序逻辑设计上,通过本次设计让我体会到了数字电路中的时序对于整个系统是否正常能够工作起着决定性作用。在时基电路和逻辑控制电路的设计中所运用的555定时器芯片搭建的不同功能的电路,让我对与单稳态电路和无稳态电路有直接的体会。在仿真电路,学会了使用Protues这一款电子电路仿真软件,并且通过虚拟示波器和逻辑分析仪去观察和分析电路的时序逻辑。

在制作实物时,使用了EDA电路设计软件来设计PCB和制作电路板来完成实物制作,在制作的过程中逐渐熟悉了软件的时候和画PCB的技巧。同时也发现了并非电路仿真成功电路就一定不存在问题。由于在实际电路中,各类元件的参数上的误和焊接上的缺陷对电路都会造成影响。而且在制作电路时一定要认真检查,如果一处出现失误,会导致整个电路失去作用甚至烧坏电路。所以在制作实物时要足够的细心去排查电路故障产生的原因并且去修正它。

在短短几天的课程设计中,不仅加深了我对数字电路基础知识的掌握程度,而且还让我经历了一个电路从无到有的设计和制作过程,加深了对专业知识的理解,让我对专业知识的学习有了更大的兴趣和动力。

电子时钟设计

我一直都是从电池-石英钟里面取秒信号。

注意,石英钟的线圈驱动,是用两个图腾柱输出驱动,有一种音频功放就是这种结构,每个图腾柱有上下两个串联的开关,两个图腾柱的上下开关交替导通,每次导通的时间大约几十毫秒。

要是从一个图腾柱取信号,好我这里有资料,现在没找着。等两天我再回答吧。像是两秒一次,图3-2 COMS晶体振荡器

从两个图腾柱取信号,经过或门,就是一秒一次脉冲。

再经过计数器,给定器,对前两者符合判别的异或门,就能达到要求。

特别要注意,石英钟PCB文件生成与打印输出.的信号是1伏特多点,要用三极管进行电平放大!

计数器一般用二极管与门判别,符合后产生单稳触发计数器复位和定时输出信号。

下岗清洁工人答复

多功能数字钟

图5-8 整点报时电路

题目:多功能数码种的设计

给电路加上计数/清零信号和被测信号后,使用逻辑分析仪去测量其中一个计数器芯片的输出,其输出结果如图2.2.3所示,其中A0-A3分别对应着计数器芯片的四个输出端Q0-Q3,A4为计数/清零信号。根据测量结果,计数器能够在计数信号有效时正常计数,在清零信号有效时保持清零状态。

一、设计目的

数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.

三、原理框图

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。

(a) 数字钟组成框图

2.晶体振荡器电路

晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。

(b) CMOS 晶体振荡器(仿真电路)

3.时间记数电路

秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连。

秒十位计数单元为6进制计数器,需要进制转换。将10进制计数器转换为6进制计数器的电路连接方法如图2.4所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连。

十进制-六进制转换电路

分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连。

时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换。利用1片74HC390实现12进制计数功能的电路如图(d)所示。

(d)十二进制电路

4.译码驱动及显示单元电路

选择CD4511作为显示译码电路;选择LED数码管作为显示单元电路。由CD4511把输进来的二进制信号翻译成十进制数字,再由数码管显示出来。这里的LED数码管是采用共阴的方法连接的。

数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。即为用COMS与或非门实现的时或分校时电路,In1端与低位的进位信号相连;In2端与校正信号相连,校正信号可直接取自分频器产生的1HZ或2HZ(不可太高或太低)信号;输出端则与分或时个位计时输入端相连。当开关打向下时,因为校正信号和0相与的输出为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态;当开关打向上时,情况正好与上述相反,这时校时电路处于校时状态。

实际使用时,因为电路开关存在抖动问题,所以一般会接一个RS触发器构成开关消抖动电路,所以整个较时电路就如图(f)。

(f)带有消抖电路的校正电路

电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号。

当时间在59分50秒到59分59秒期间时,分十位、分个位和秒十位均保持不变,分别为5、9和5,因此可将分计数器十位的QC和QA 、个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。

报时电路可选74HC30来构成。74HC30为8输入与非门。

四、元器件

4.共阴八段数码管6个

5.网络线2米/人

7.CD4060集成块1块

8.74HC390集成块3块

译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流.9.74HC51集成块1块

10.74HC00集成块4块

11.74HC30集成块1块

13.500Ω电阻14个

14.30p电容2个

16.蜂鸣器10个

五、各功能块电路图

数字钟从原理上讲是一种典型的数字电路,可以由许多中小规模集成电路组成,所以可以分成许多的电路。

(一) 六进制电路

由74HC390、7400、数码管与4511组成,电路如图一。

(二) 十进制电路

由74HC390、7400、数码管与4511组成,电路如图二。

(四) 双六十进制电路

由2个六十进制连接而成,把分个位的输入信号与秒十位的Qc相连,使其产生进位,电路图如图四。

(五) 时间计数电路

由1个十二进制电路、2个六十进制电路组成,因上面已有一个双六十电路,只要把它与十二进制电路相连即可,详细电路见图五。

(六) 校正电路

由74CH51D、74HC00D与电阻组成,校正电路有分校正和时校正两部分,电路如图六。

(七) 晶体振荡电路

由晶体与2个30pF电容、1个4060、一个10兆的电阻组成,芯片3脚输出2Hz的方波信号,电路如图七。

(八) 整点报时电路

由74HC30D和蜂鸣器组成,当时间在59:50到59:59时,蜂鸣报时,电路如图八。

急求数字电路课程设计要求:设计一个矩形波计数器,能计数1到99,还可以查矩形波的个数,电源是直流稳压电

计时过程具有报时功能,当时间到达整点前5秒进行蜂鸣报时;由两个数码管、两4511、一个74HC390与一个7400芯片组成,电路如图三。

计数器用74HC390、CD4518、MC14518都可以,它们是双十进制BCD码计数器,把计数器1的BCD码输出通过译码器74HC42(四-十线译码器)或MC14514(四-十六线译码器)变成十进一的矩形波,74HC42和MC14514都取它们的第11脚作输出就是十进一的关系,用这个十进一的矩形波作计数器2的输入,这样一来计数器1、计数器2的BCD码输出就是个位、十位的矩形波计数了,你可以根据需要再变换成七段显示码或其他需要的形式。

先做个振荡电路,然后分频率。出来的就是方波,作为源来用。

1做个比较电路过某个可调压12.10MΩ电阻5个力输出方波。

二位共阴数码管与CD4511芯片的焊接电路图是怎样的?

6.CD4511集成块6块

你这至少要有一块电路板的,总不能就在芯片引脚上焊导线吧?

15.32.768k时钟晶体1个

电路板网上有卖的,也很便宜的。

74HC51集成块1块.

把单片机和数码管及其它元件都焊到电路板上,再用导线在板子的后面连接。

数电数字钟课程设计报告

一般采用10进制计数器74HC390来实现时间计数单元的计数功能.为减少器件使用数量,可选74HC390,其内部逻辑框图如图 2.3所示.该器件为双2—5-10异步计数器,并且每一计数器均提供一个异步清零端(高电平有效).

数字电子技术课程设计报告

题 目: 数字钟的设计与制作

学 年

学 期:

专 业 班 级:

学 号: 姓 名:

时 间:

地点:

设计目的

熟悉集成电路的引脚安排.

掌握各芯片的逻辑功能及使用方法.

了解面包板结构及其接线方法.

了解数字钟的组成及工作原理.

设计要求

1.设计指标

时间以24小时为一个周期;

有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;

为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号.

2.设计要求

画出电路原理图(或仿真电路图);

元器件及参数选择;

电路仿真与调试;

3.制作要求 自行装配和调试,并能发现问题和解决问题.

4.编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会.

1.数字钟的计数器实现了对时间的累计并以8421BCD码的形式输送到CD4511芯片,再由4511芯片把BCD码转变为十进制数码送到数码管中显示出来。构成

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路.由于计数的起始时间不可能与标准时间(如时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定.通常使用石英晶体振荡器电路构成数字钟.图 3-1所示为数字钟的一般构成框图.

⑴晶体振荡器电路

晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定.不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路.

⑵分频器电路

分频器电路将32768Hz的高频方波信号经32768()次分频后得到1Hz的方波信号供秒计数器进行计数.分频器实际上也就是计数器.

⑶时间计数器电路

时间计数电路由秒个位和秒十位计数器,分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器,分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器.

⑷译码驱动电路

⑸数码管

数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管.

2.数字钟的工作原理

1)晶体振荡器电路

晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定.

图3-2所示电路通过CMOS非门构成的输出为方波的数字式晶体振荡电路,这个电路中,CMOS非门U1与晶体,电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波.输出反馈电 阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器.电容C1,C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能.由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确.

晶体XTAL的频率选为32768HZ.该元件专为数字钟电路而设计,其频率较低,有利于减少分频器级数.

从有关手册中,可查得C1,C2均为30pF.当要求频率准确度和稳定度更高时,还可接入校正电容并采取温度补偿措施.

由于CMOS电路的输入阻抗极高,因此反馈电阻R1可选为10MΩ.较高的反馈电阻有利于提高振荡频率的稳定性.

非门电路可选74HC00.

2)分频器电路

通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频.

通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现.例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768(215),即实现该分频功能的计数器相当于15极2进制计数器.常用的2进制计数器有74HC393等.

本实验中采用CD4060来构成分频电路.CD4060在数字集成电路中可实现的分频次数,而且CD4060还包含振荡电路所需的非门,使用更为方便.

CD4060计数为14级2进制计数器,可以将32768HZ的信号分频为2HZ,其内部框图如图3-3所示,从图中可以看出,CD4060的时钟输入端两个串接的非门,因此可以直接实现振荡和分频的功能.

图3-3 CD4046内部框图

3)时间计数单元

时间计数单元有时计数,分计数和秒计数等几个部分.

时计数单元一般为12进制计数器计数器,其输出为两位8421BCD码形式;分计数和秒计数单元为60进制计数器,其输出也为8421BCD码2用个计数芯片,输出bcd两段码直接驱动2个7段数码管,10011001合并出个复位信号.

图3-4 74HC390(1/2)内部逻辑框图

秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可.CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连.

秒十位计数单元为6进制计数器,需要进制转换.将10进制计数器转换为6进制计数器的电路连接方法如图3-5所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连.

图3-5 10进制——6进制计数器转换电路

分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连.

时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换.利用1片74HC390实现12进制计数功能的电路如图3-6所示.

另外,图3-6所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用.

图3-6 12进制计数器电路

4)译码驱动及显示单元

计数器实现了对时间的累计以8421BCD码形式输出,选用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流,选用CD4511作为显示译码电路,选用LED数码管作为显示单元电路.

当重新接通电源或走时出现误时都需要对时间进行校正.通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可.

根据要求,数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中.图3-7所示即为带有基本RS触发器的校时电路,

图3-7 带有消抖动电路的校正电路

6)整点报时电路

一般时钟都应具备整点报时电路功能,即在时间出现整点前数秒内,数字钟会自动报时,以示提醒.其作用方式是发出连续的或有节奏的音频声波,较复杂的也可以是实时语音提示.

根据要求,电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号.报时电路选74HC30,选蜂鸣器为电声器件.

元器件

1.实验中所需的器材

面包板1块.

示波器.

万用表.

镊子1把.

剪刀1把.

网络线2米/人.

共阴八段数码管6个.

CD4511集成块6块.

CD4060集成块1块.

74HC390集成块3块.

74HC00集成块5块.

74HC30集成块1块.

10MΩ电阻5个.

500Ω电阻14个.

30p电容2个.

32.768k时钟晶体1个.

蜂鸣器.

2.芯片内部结构图及引脚图

图4-1 7400 四2输入与非门 图4-2 CD4511BCD七段译码/驱动器

图4-3 CD4060BD 图4-4 74HC390D

图4-5 74HC51D 图4-6 74HC30

3.面包板内部结构图

面包板右边一列上五组竖的相通,下五组竖的相通,面包板的左边上下分四组,每组中X,Y列(0-15相通,16-40相通,41-55相通,ABCDE相通,FGHIJ相通,E和F之间不相通.

个功能块电路图

一个CD4511和一个LED数码管连接成一个CD4511驱动电路,数码管可从0---9显示,以次来检查数码管的好坏,见附图5-1.

图5-1 4511驱动电路

利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00连接成一个十进制计数器,电路在晶振的作用下数码管从0—9显示,见附图5-2.

图5-2 74390十进制计数器

利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00和一个晶振连接成一个六进制计数器,数码管从0—6显示,见附图5-3.

图5-3 74390六进制计数器

利用一个六进制电路和一个十进制连接成一个六十进制电路,电路可从0—59显示,见附图5-4.

图5-4 六十进制电路

利用两个六十进制的电路合成一个双六十进制电路,两个六十进制之间有进位,见附图5-5.

图5-5 双六十进制电路

利用CD4060,电阻及晶振连接成一个分频——晶振电路,见附图5-6.

图5-6 分频—晶振电路

利用74HC51D和74HC00及电阻连接成一个校时电路,见附图5-7.

图5-7 校时电路

利用74HC30和蜂鸣器连接成整点报时电路.见附图5-8.

利用两个六十进制和一个十二进制连接成一个时,分,秒都会进位的电路总图,见附图5-9.

图5-9 时,分,秒的进位连接图

总接线元件布局简图,见附图6-1

八,总结

设计过程中遇到的问题及其解决方法.

在检测面包板状况的过程中,出现本该相通的地方却未通的状况,后经检验发现是由于万用表笔尖未与面包板内部垂直接触所至.

在检测CD4511驱动电路的过程中发现数码管不能正常显示的状况,经检验发现主要是由于接触不良的问题,其中包括线的接触不良和芯片的接触不良,在实验过程中,数码管有几段二极管时隐时现,有时会消失.用5V电源对数码管进行检测,一端接地,另一端接触每一段二极管,发现二极管能正常显示的,再用万用表欧姆档检测每一根线是否接触良好,在检测过程中发现有几根线有时能接通,有时不能接通,把接触不好的线重新接过后发现能正常显示了.其次是由于芯片接触不良的问题,用万用表欧姆档检测有几个引脚本该相通的地方却未通,而检测的导线状况良好,其解决方法为把CD4511的芯片拔出,根据面包板孔的的状况重新调整其引脚,使其正对于孔,再用力均匀地将芯片插入面包板中,此后发现能正常显示,本次实验中还发现一块坏的LED数码管和两块坏的CD4511,经更换后均能正常显示.

在连接晶振的过程中,晶振无法起振.在排除线与芯片的接触不良问题后重新对照电路图,发现是由于12脚未接地所至.

在连接六进制的过程中,发现电路只能4,5的跳动,后经发现是由于接到与非门的引脚接错一根所至,经纠正后能正常显示.

在连接校正电路的过程中,出现时和分都能正常校正时,但秒却受到影响,特别时一较分钟的时候秒乱跳,而不校时的时候,秒从40跳到59,然后又跳回40,分和秒之间无进位,电路在时,分,秒进位过程中能正常显示,故可排除芯片和连线的接触不良的问题.经检查,校正电路的连线没有错误,后用万用表的直流电压档带电检测秒十位的QA,QB,QC和QD脚,发现QA脚时有电压时而无电压,再检测秒到分和分到时的进位端,发现是由于秒到分的进位未拔掉所至.

在制作报时电路的过程中,发现蜂鸣器在57分59秒的时候就开始报时,后经检测电路发现是由于把74HC30芯片当16引脚的芯片来接,以至接线都错位,重新接线后能正常报时.

连接分频电路时,把时个位的QD和时十位的1脚断开,然后时十位的1脚接到晶振的3脚,时十位的3脚接到秒个位的1脚,所连接的电路图无常工作,时十位从0-9的跳,时个位只能显示一个0,在这个电路中3脚的分频用到两次,故无常显示,因此要把12进制接到74HC390的一个逻辑电路空出来用于分频即可,因此把时十位的CD4511的12,6脚接地,7脚改为接74HC390的5脚,74HC390的3,4脚断开,然后4脚接9脚即可,其中空出的74HC390的3脚就可用于2Hz的分频,分频后变为1Hz,整个电路也到此为正常的数字钟计数.

在此次的数字钟设计过程中,更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法.

在连接六进制,十进制,六十进制的进位及十二进制的接法中,要求熟悉逻辑电路及其芯片各引脚的功能,那么在电路出错时便能准确地找出错误所在并及时纠正了.

在设计电路中,往往是先仿真后连接实物图,但有时候仿真和电路连接并不是完全一致的,例如仿真的连接示意图中,往往没有接高电平的16脚或14脚以及接低电平的7脚或8脚,因此在实际的电路连接中往往容易遗漏.又例如74HC390芯片,其本身就是一个十进制计数器,在仿真电路中必须连接反馈线才能正常显示,而在实际电路中无需再连接,因此仿真图和电路连接图还是有一定区别的.

在设计电路的连接图中出错的主要原因都是接线和芯片的接触不良以及接线的错误所引起的.

3.对该设计的建议

此次的数字钟设计重在于仿真和接线,虽然能把电路图接出来,并能正常显示,但对于电路本身的原理并不是十分熟悉.总的来说,通过这次的设计实验更进一步地增强了实验的动手能力.

数电课程设计要用到芯片74248n可以用什么同样功能的芯片代替

5)校时电源电路

用74ls248代替。74249,74ls249的引脚和74ls248的排列是一样的,也应能替代。用CD4511替代,CD4511的引脚排列和74248一样,只是显示数图3-1 数字钟的组成框图据时CD4511的5脚要接地(低电平)。

芯片连接图见附图7-1