2000年河北省中考数学试卷_2003河北数学中考
2010河北中考数学试题及
做梦~嘿嘿
2000年河北省中考数学试卷_2003河北数学中考
2000年河北省中考数学试卷_2003河北数学中考
2000年河北省中考数学试卷_2003河北数学中考
都没有啦 我也刚考完
2010年河北省初中毕业生升学文化课考试
数 学 试 卷
本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.
本试卷满分为120分,考试时间为120分钟.
卷Ⅰ(选择题,共24分)
注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.
2.每小题选出后,用2B铅笔把答题卡上对应题目的标号涂黑;答在试卷上无效.
一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.计算3×( 2) 的结果是
A.5 B. 5 C.6 D. 6
2.如图1,在△ABC中,D是BC延长线上一点,
∠B = 40°,∠ACD = 120°,则∠A等于
A.60° B.70°
C.80° D.90°
3.下列计算中,正确的是
A. B. C. D.
4.如图2,在□ABCD中,AC平分∠DAB,AB = 3,
则□ABCD的周长为
A.6 B.9
C.12 D.15
5.把不等式 < 4的解集表示在数轴上,正确的是
6.如图3,在5×5正方形网格中,一条圆弧经过A,B,C三点,
那么这条圆弧所在圆的圆心是
A.点P B.点Q C.点R D.点M
7.化简 的结果是
A. B. C. D.1
8.小悦买书需用48元钱,付款时恰好用了1元和5元的纸共12张.设所用的1元纸为x张,根据题意,下面所列方程正确的是
A. B.
C. D.
9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是
10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是
A.7 B.8
C.9 D.10
11.如图5,已知抛物线 的对称轴为 ,点A,
B均在抛物线上,且AB与x轴平行,其中点A的坐标为
(0,3),则点B的坐标为
A.(2,3) B.(3,2)
C.(3,3) D.(4,3)
12.将正方体(相对面上的点数分别为1和6、2和5、
3和4)放置于水平桌面上,如图6-1.在图6-2中,将
向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成
一次变换.若的初始位置为图6-1所示的状态,那么按
上述规则连续完成10次变换后,朝上一面的点数是
A.6 B.5 C.3 D.2
总 分 核分人
2010年河北省初中毕业生升学文化课考试
数 学 试 卷
卷II(非选择题,共96分)
注意事项:1.答卷II前,将密封线左侧的项目填写清楚.
2.答卷II时,将用蓝色、黑色钢笔或圆珠笔直接写在试卷上.
题号 二 三
19 20 21 22 23 24 25 26
得分
得 分 评卷人
二、填空题(本大题共6个小题,每小题3分,共18分.把
写在题中横线上)
13. 的相反数是 .
14.如图7,矩形ABCD的顶点A,B在数轴上, CD = 6,点A对应的数为 ,则点B所对应的数为 .
15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .
16.已知x = 1是一元二次方程 的一个根,则 的值为 .
17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB与底面半径OB的夹角为 , ,
则圆锥的底面积是 平方米(结果保留π).
18.把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S1;若按图10-2摆放时,阴影部分的面积为S2,则S1 S2(填“>”、“<”或“=”).
三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)
得 分 评卷人
19.(本小题满分8分)
解方程: .
得 分 评卷人
20.(本小题满分8分)
如图11-1,正方形ABCD是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图11-2的程序移动.
(1)请在图11-1中画出光点P经过的路径;
(2)求光点P经过的路径总长(结果保留π).
得 分 评卷人
21.(本小题满分9分)
甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
分 数 7 分 8 分 9 分 10 分
人 数 11 0 8
(1)在图12-1中,“7分”所在扇形的圆心角
等于 °.
(2)请你将图12-2的统计图补充完整.
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
(4)如果该要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
得 分 评卷人
22.(本小题满分9分)
如图13,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数 (x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数 (x>0)的图象与△MNB有公共点,请直接写出m的取值范围.
得 分 评卷人
23.(本小题满分10分)
观察思考
某种在同一平面进行传动的机械装置如图14-1,图14-2
是它的示意图.其工作原理是:滑块Q在平直滑道l上可以
左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且
PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研
究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得
OH = 4分米,PQ = 3分米,OP = 2分米.
解决问题
(1)点Q与点O间的小距离是 分米;
点Q与点O间的距离是 分米;
点Q在l上滑到左端的位置与滑到右端位置间
的距离是 分米.
(2)如图14-3,小明同学说:“当点Q滑动到点H的位
置时,PQ与⊙O是相切的.”你认为他的判断对吗?
为什么?
(3)①小丽同学发现:“当点P运动到OH上时,点P到l
的距离小.”事实上,还存在着点P到l距离
的位置,此时,点P到l的距离是 分米;
②当OP绕点O左右摆动时,所扫过的区域为扇形,
求这个扇形面积时圆心角的度数.
得 分 评卷人
24.(本小题满分10分)
在图15-1至图15-3中,直线MN与线段AB相交
于点O,∠1 = ∠2 = 45°.
(1)如图15-1,若AO = OB,请写出AO与BD
的数量关系和位置关系;
(2)将图15-1中的MN绕点O顺时针旋转得到
图15-2,其中AO = OB.
求证:AC = BD,AC ⊥ BD;
(3)将图15-2中的OB拉长为AO的k倍得到
图15-3,求 的值.
得 分 评卷人
25.(本小题满分12分)
如图16,在直角梯形ABCD中,AD‖BC, ,AD = 6,BC = 8, ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.
设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到值,请回答:该值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
得 分 评卷人
26.(本小题满分12分)
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.
若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y = x+150,
成本为20元/件,无论销售多少,每月还需支出广告费60元,设月利润为w内(元)(利润 = 销售额-成本-广告费).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为
常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳 x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w内 = 元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润?若在国外销售月利润的值与在国内销售月利润的值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线 的顶点坐标是 .
2010年河北省初中毕业生升学文化课考试
数学试题参
一、选择题
题 号 1 2 3 4 5 6 7 8 9 10 11 12
答 案 D C D C A B B A C B D B
二、填空题
13. 14.5 15. 16.1 17.36 π 18. =
三、解答题
19.解: , .
经检验知, 是原方程的解.
20.解: (1)如图1;
【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】
(2)∵ ,
∴点P经过的路径总长为6 π.
21.解:(1)144;
(2)如图2;
(3)甲校的平均分为8.3分,中位数为7分;
由于两校平均分相等,乙校成绩的中位数大于甲
校的中位数,所以从平均分和中位数角度上判断,
乙校的成绩较好.
(4)因为选8名学生参加市级口语团体赛,甲校得
10分的有8人,而乙校得10分的只有5人,所以应选甲校.
22.解:(1)设直线DE的解析式为 ,
∵点D ,E的坐标为(0,3)、(6,0),∴
解得 ∴ .
∵ 点M在AB边上,B(4,2),而四边形OABC是矩形,
∴ 点M的纵坐标为2.
又 ∵ 点M在直线 上,
∴ 2 = .∴ x = 2.∴ M(2,2).
(2)∵ (x>0)经过点M(2,2),∴ .∴ .
又 ∵ 点N在BC边上,B(4,2),∴点N的横坐标为4.
∵ 点N在直线 上, ∴ .∴ N(4,1).
∵ 当 时,y = = 1,∴点N在函数 的图象上.
(3)4≤ m ≤8.
23.解:(1)4 5 6;
(2)不对.
∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ2≠PQ2 + OP2,
∴OP与PQ不垂直.∴PQ与⊙O不相切.
(3)① 3;
②由①知,在⊙O上存在点P, 到l的距离为3,此时,OP将不能再向下转动,如图3.OP在绕点O左右摆动过程中所扫过的扇形就是 OP.
连结 P,交OH于点D.
∵PQ, 均与l垂直,且PQ = ,
∴四边形PQ 是矩形.∴OH⊥P ,PD = D.
由OP = 2,OD = OH HD = 1,得∠DOP = 60°.
∴∠PO = 120°.
∴ 所求圆心角的度数为120°.
24.解:(1)AO = BD,AO⊥BD;
(2)证明:如图4,过点B作BE‖CA交DO于E,∴∠ACO = ∠BEO.
又∵AO = OB,∠AOC = ∠BOE,
∴△AOC ≌ △BOE.∴AC = BE.
又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°.
∴∠DEB = 45°.
∵∠2 = 45°,∴BE = BD,∠EBD = 90°.
∴AC = BD.
延长AC交DB的延长线于F,如图4.∵BE‖AC,∴∠AFD = 90°.
∴AC⊥BD.
(3)如图5,过点B作BE‖CA交DO于E,∴∠BEO = ∠ACO.
又∵∠BOE = ∠AOC ,
∴△BOE ∽ △AOC.
∴ .
又∵OB = kAO,
由(2)的方法易得 BE = BD.
∴ .
25.解:(1)y = 2t;
(2)当BP = 1时,有两种情形:
①如图6,若点P从点M向点B运动,有 MB = = 4,MP = MQ = 3,
∴PQ = 6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴ .
∵AB = ,∴点E在AD上.
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面
积为 .
②若点P从点B向点M运动,由题意得 .
PQ = BM + MQ BP = 8,PC = 7.设PE与AD交于点F,QE与AD或AD的
延长线交于点G,过点P作PH⊥AD于点H,则
HP = ,AH = 1.在Rt△HPF中,∠HPF = 30°,
∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2,
∴点G与点D重合,如图7.此时△EPQ与梯形ABCD
的重叠部分就是梯形FPCG,其面积为 .
(3)能.
4≤t≤5.
26.解:(1)140 57500;
(2)w内 = x(y -20)- 60 = x2+130 x ,
w外 = x2+(150 )x.
(3)当x = = 6500时,w内;分
由题意得 ,
解得a1 = 30,a2 = 270(不合题意,舍去).所以 a = 30.
(4)当x = 5000时,w内 = 337500, w外 = .
若w内 < w外,则a<32.5;
若w内 = w外,则a = 32.5;
若w内 > w外,则a>32.5.
所以,当10≤ a <32.5时,选择在国外销售;
当a = 32.5时,在国外和国内销售都一样;
当32.5< a ≤40时,选择在国内销售.
2010年河北省初中毕业生升学文化课考试
数学试题参
一、选择题
题 号 1 2 3 4 5 6 7 8 9 10 11 12
答 案 D C D C A B B A C B D B
二、填空题
13. 14.5 15. 16.1 17.36 π 18. =
三、解答题
19.解: , .
经检验知, 是原方程的解.
20.解: (1)如图1;
【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】
(2)∵ ,
∴点P经过的路径总长为6 π.
21.解:(1)144;
(2)如图2;
(3)甲校的平均分为8.3分,中位数为7分;
由于两校平均分相等,乙校成绩的中位数大于甲
校的中位数,所以从平均分和中位数角度上判断,
乙校的成绩较好.
(4)因为选8名学生参加市级口语团体赛,甲校得
10分的有8人,而乙校得10分的只有5人,所以应选甲校.
22.解:(1)设直线DE的解析式为 ,
∵点D ,E的坐标为(0,3)、(6,0),∴
解得 ∴ .
∵ 点M在AB边上,B(4,2),而四边形OABC是矩形,
∴ 点M的纵坐标为2.
又 ∵ 点M在直线 上,
∴ 2 = .∴ x = 2.∴ M(2,2).
(2)∵ (x>0)经过点M(2,2),∴ .∴ .
又 ∵ 点N在BC边上,B(4,2),∴点N的横坐标为4.
∵ 点N在直线 上, ∴ .∴ N(4,1).
∵ 当 时,y = = 1,∴点N在函数 的图象上.
(3)4≤ m ≤8.
23.解:(1)4 5 6;
(2)不对.
∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ2≠PQ2 + OP2,
∴OP与PQ不垂直.∴PQ与⊙O不相切.
(3)① 3;
②由①知,在⊙O上存在点P, 到l的距离为3,此时,OP将不能再向下转动,如图3.OP在绕点O左右摆动过程中所扫过的扇形就是 OP.
连结 P,交OH于点D.
∵PQ, 均与l垂直,且PQ = ,
∴四边形PQ 是矩形.∴OH⊥P ,PD = D.
由OP = 2,OD = OH HD = 1,得∠DOP = 60°.
∴∠PO = 120°.
∴ 所求圆心角的度数为120°.
24.解:(1)AO = BD,AO⊥BD;
(2)证明:如图4,过点B作BE‖CA交DO于E,∴∠ACO = ∠BEO.
又∵AO = OB,∠AOC = ∠BOE,
∴△AOC ≌ △BOE.∴AC = BE.
又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°.
∴∠DEB = 45°.
∵∠2 = 45°,∴BE = BD,∠EBD = 90°.∴AC = BD. 延长AC交DB的延长线于F,如图4.∵BE‖AC,∴∠AFD = 90°.∴AC⊥BD.
(3)如图5,过点B作BE‖CA交DO于E,∴∠BEO = ∠ACO.
又∵∠BOE = ∠AOC ,
∴△BOE ∽ △AOC.
∴ .
又∵OB = kAO,
由(2)的方法易得 BE = BD.∴ .
25.解:(1)y = 2t;(2)当BP = 1时,有两种情形:
①如图6,若点P从点M向点B运动,有 MB = = 4,MP = MQ = 3,
∴PQ = 6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴ .
∵AB = ,∴点E在AD上.
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面
积为 .
②若点P从点B向点M运动,由题意得 .
PQ = BM + MQ BP = 8,PC = 7.设PE与AD交于点F,QE与AD或AD的
延长线交于点G,过点P作PH⊥AD于点H,则
HP = ,AH = 1.在Rt△HPF中,∠HPF = 30°,
∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2,
∴点G与点D重合,如图7.此时△EPQ与梯形ABCD
的重叠部分就是梯形FPCG,其面积为 .
(3)能.4≤t≤5.
26.解:(1)140 57500;
(2)w内 = x(y -20)- 60 = x2+130 x ,
w外 = x2+(150 )x.
(3)当x = = 6500时,w内;分
由题意得 ,
解得a1 = 30,a2 = 270(不合题意,舍去).所以 a = 30.
(4)当x = 5000时,w内 = 337500, w外 = .
若w内 < w外,则a<32.5;
若w内 = w外,则a = 32.5;
若w内 > w外,则a>32.5.
所以,当10≤ a <32.5时,选择在国外销售;
当a = 32.5时,在国外和国内销售都一样;
当32.5< a ≤40时,选择在国内销售.
初中数学论文
几何的三大问题
平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中有名的就是所谓的三大问题。
几何三大问题是:
1、化圆为方——求作一正方形使其面积等於一已知圆;
2、三等分任意角;
3、倍立方——求作一立方体使其体积是一已知立方体的二倍。
圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。
三大问题的第二个是三等分一个角的问题。对於某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20°的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18=20°)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。
第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。
这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。
1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
生活中的数学
有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。
奇妙的“黄金数”
取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。
有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果。
建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。
数0.618…还使优选法成为可能。优选法是一种求化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做0次试验的效果!
“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。
美妙的轴对称
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。
如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?
再仔细观察,不难发现有许多艺术品也成轴对称。举个简单的例子:桥。它算是生活中常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:城的布局。这可是典型的轴对称布局了。它以故宫、、、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。
数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
河北数学中考多少题
河北中考数学试卷一共有26题,满分120分。
具体分为以下几类:
一、选择题(共有16小题,共42分,1-10各3分,11-16各2分)
二、填空题(共有3小题,共12分)
三、解答题(共有7小题,共66分)
谁知道近几年的中考数学试卷的倒数第1,2题?
八、解答题(本题满分7分)
24.在平面直角坐标系 中,抛物线 经过 两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为 ,将直线 沿 轴向下平移两个单位得到直线 ,直线 与抛物线的对称轴交于 点,求直线 的解析式;
(3)在(2)的条件下,求到直线 距离相等的点的坐标.
九、解答题(本题满分8分)
25.我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在 中,点 分别在 上,
设 相交于点 ,若 , .
请你写出图中一个与 相等的角,并猜想图中哪个四边形
是等对边四边形;
(3)在 中,如果 是不等于 的锐角,点 分别在 上,且 .探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。