小栢今天给分享高中数学考点及公式的知识,其中也会对高中数学考知识点进行解释,希望能解决你的问题,请看下面的文章阅读吧!

高中数学考点及公式 高中数学考知识点高中数学考点及公式 高中数学考知识点


高中数学考点及公式 高中数学考知识点


1、数学学习困难的研究是数学教学与实践中一个引人注目的问题,但是数学又是一个拉分很大的科目,大家学习完 总结 一下知识点和公式。

2、我分享高中数学知识点总结及公式,希望可以帮助大家!高中数学知识点总结及公式:1.的有关概念。

3、1)(集):某些指定的对象集在一起就成为一个(集).其中每一个对象叫元素注意:①与的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

4、②中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个)。

5、③具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)的表示 方法 :常用的有列举法、描述法和图文法3)的分类:有限集,无限集,空集。

6、4)常用数集:N,Z,Q,R,N2.子集、交集、并集、补集、空集、全集等概念。

7、1)子集:若对x∈A都有x∈B,则A B(或A B);2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}注意:①? A,若A≠?,则? A ;②若 , ,则 ;③若 且 ,则A=B(等集)3.弄清与元素、与的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。

8、4.有关子集的几个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

9、5.交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6.有限子集的个数:设A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

10、高中数学知识点总结及公式:基本初等函数从其中一个顶点向一个边引一条线,交另一边上某一点,则这个图形变成有一条公共边且另一组边在同一直线上的两个三角形。

11、有六个内角,其中公共边与另一组在同一直线上的边相交形成的两个角中,每一个角都是一个三角形的一个内角,且是另一个三角形的一个外角……另外还有大于平角小于周角的角。

12、正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanαcosαcosα=cotαsinαtanα=sinαsecαcotα=cosαcscαsecα=tanαcscαcscα=secαcotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1一个园,弧长和半径相等时所对应的角度是1弧度.弧度和角度的换算关系:弧度180/(2π)=角度诱导公式★常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)下一页高中数学知识点总结及公式。

本文到这结束,希望上面文章对大家有所帮助。