蛋白质的分子组成

侧链

主要有碳(50%~55%)、氢(6%~7%)、氧(19%~24%)、氮(13%~19写错了,应该是 helix不是heliv.%)和硫(0~4%)。有些蛋白质还含有少量磷或金属元素铁、铜、锌、锰、钴、钼等,个别蛋白质还含有碘。各种蛋白质的很接近,平均为16%。

蛋白质分子结构 蛋白质结构与功能的关系蛋白质分子结构 蛋白质结构与功能的关系


蛋白质分子结构 蛋白质结构与功能的关系


由于蛋白质是体内的主要含氮物质,因此测定生物样品的人 Thr Ser Ile Thr就可按下式推算出蛋白质大致含量。

生物体结构越复杂,其蛋白质种类和功能也越繁多。具有复杂空间结构的蛋白质不仅是生物体的重要结构物质之一,而且承担着各种生物学功能,其动态功能包括化学催化反应、免疫反应、血液凝固、物质代谢调控、基因表达调控和肌收缩等功能。

蛋白质有几级结构

1 primary具体的氨基酸序列

四级结构形等结构层次的基础上,由于成超二级结构

蛋白质是以氨基酸为基本单位构成的生物大分子。一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。二级结构:蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。四级结构:多亚基蛋白质分子中各个具有结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。用约20种氨基酸作原料,在细胞质中的核糖体上,将氨基酸分子互相连接成肽链。一个氨基酸分子的氨基,脱去一分子水而连接起来,这种结合方式叫做脱水缩合。通过缩合反应,在羧基和氨基之间形成的连接两个氨基酸分子的那个键叫做肽键。由肽键连接形成的化合物称为肽。(参见百科)

蛋白质有1234级结构,不是所有的蛋白质都有4级结构的。肉熟了,蛋白质变性,破坏了2级及以上的结构,即氢键断裂了,但蛋白质的一级结构没有破坏,即肽键还没有被破坏

四级吧

蛋白质分子各层次空间结构

:肽键

蛋白质是由20种不同的氨基酸组成的多肽链所构成

hbs(β亚基) N端…苏-脯-缬-谷-赖……

它可以描述成4级层次结构。其中一级结

有些蛋白质有运输作用:如血红蛋白、载体蛋白;

它是一种一维的信息;

二级结构是由相邻连续的若干氨基酸在局部空间折叠形成具有一定规则的片段子结构

结构是指由规则的二级结构进一步折叠形成的三维空间形状;

四级结构是指若干条多肽链相互作用形成稳定的空间结构一维氨基酸序列在没有进行空间折叠前没有功能意义的二级结构是蛋白质空间结构的基本单元它们之间相互作用

它是一种从二级向结构转化的中间结构

如结构

的结构域

可看成是最基本的功能实体

但其尚不具备完整的生物活性

空间自然折叠的三维形状最终决定蛋白质的功能

蛋白质结构与功能。 知识联系。

蛋白质为生物高分子物质之一,具有三维空间结构,因而执行复杂的生物学功能。蛋白质结构与功能之间的关系非常密切。在研究中,一般将蛋白质分子的结构分为一级结构与空间结构两类。

一、蛋白质的一级结构

蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。

迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖酶、胰蛋白酶等。

蛋白质的一级结构决定了蛋白质的二级、等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。

二、蛋白质的空间结构

蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。

蛋白质的空间结构就是指蛋白质的二级、和四级结构。

(一)蛋白质的二级结构

蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。

1.肽键平面(或称酰胺平面,amide plane)。

Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,得出图1-2所示结构,从一个肽键的周围来看,得知:

(1)中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。

(2)肽键的C及N周围三个键角之和均为360°,说明都处于一个平面上,也就是说六个原子基本上同处于一个平面,这就是肽键平面。肽链中能够旋转的只有α碳原子所形成的单键,此单键的旋转决定两个肽键平面的位置关系,于是肽键平面成为肽链盘曲折叠的基本单位。

(3)肽键中的C-N既具有双键性质,就会有顺反不同的立体异构,已证实处于反位。

2.蛋白质主链构象的结构单元

1)α-螺旋Pauling等人对α-角蛋白(α-keratin)进行了X线衍射分析,从衍射图中看到有0.5~0.55nm的重复单位,故推测蛋白质分子中有重复性结构,并认为这种重复性结构为α-螺旋(α-helix)见图1-4.

α-螺旋的结构特点如下:

(1)多个肽键平面通过α-碳原子旋转,相互之间紧密盘曲成稳固的右手螺旋。

(2)主链呈螺旋上升,每3.6个氨基酸残基上升一圈,相当于0.54nm,这与X线衍射图符合。

(3)相邻两圈螺旋之间借肽键中C=O和H桸形成许多链内氢健,即每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,这是稳定α-螺旋的主要键。

(4)肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响α-螺旋的形成。酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于α-螺旋形成;较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍α-螺旋形成;脯氨酸因其α-碳原子位于五元环上,不易扭转,加之它是酸,不易形成氢键,故不易形成上述α-螺旋;甘氨酸的R基为H,空间占位很小,也会影响该处螺旋的稳定。

2)β-片层结构Astbury等人曾对β-角蛋白进行X线衍射分析,发现具有0.7nm的重复单位。如将毛发α-角蛋白在湿热条件下拉伸,可拉长到原长二倍,这种α-螺旋的X线衍射图可改变为与β-角蛋白类似的衍射图。说明β-角蛋白中的结构和α-螺旋拉长伸展后结构相同。两段以上的这种折叠成锯齿状的肽链,通过氢键相连而平行成片层状的结构称为β-片层(β-pleated sheet)结构或称β-折迭(图1-5)。

β-片层结构特点是:

①是肽链相当伸展的结构,肽链平面之间折叠成锯齿状,相邻肽键平面间呈110°角。氨基酸残基的R侧链伸出在锯齿的上方或下方。

②依靠两条肽链或一条肽链内的两段肽链间的C=O与H梄形成氢键,使构象稳定。

③两段肽链可以是平行的,也可以是反平行的。即前者两条链从“N端”到“C端”是同方向的,后者是反方向的。β-片层结构的形式十分多样,正、反平行能相互交替。

④平行的β-片层结构中,两个残基的间距为0.65nm;反平行的β-片层结构,则间距为0.7nm.

3)β-转角

蛋白质分子中,肽链经常会出现180°的回折,在这种回折角处的构象就是β-转角(β-turn或β-bend)。β-转角中,个氨基酸残基的C=O与第四个残基的N桯形成氢键,从而使结构稳定(图1-6)。

4)无规卷曲

没有确定规律性的部分肽链构象,肽链中肽键平面不规则排列,属于松散的无规卷曲(random coil)。

超二级结构(supersecondary structure)是指在多肽链内顺序上相互邻近的二级结构常常在空间折叠中靠近,彼此相互作用,形成规则的二级结构聚集体。目前发现的超二级结构有三种基本形式:α螺旋组合(αα);β折叠组合(βββ)和α螺旋β折叠组合(βαβ),其中以βαβ组合最为常见。它们可直接作为结构的“建筑块”或结构域的组成单位,是蛋白质构象中二级结构与结构之间的一个层次,故称超二级结构。

结构域(domain)也是蛋白质构象中二级结构与结构之间的一个层次。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,形成二个或多个在空间上可以明显区别它与蛋白质亚基结构的区别。一般每个结构域约由100-200个氨基酸残基组成,各有独特的空间构象,并承担不同的生物学功能。如免疫球蛋白(IgG)由12个结构域组成,其中两个轻链上各有2个,两个重链上各有4个;补体结合部位与抗原结合部位处于不同的结构域。一个蛋白质分子中的几个结构域有的相同,有的不同;而不同蛋白质分子之间肽链中的各结构域也可以相同。如乳酸脱氢酶、3-磷酸甘油醛脱氢酶、苹果酸脱氢酶等均属以NAD+为辅酶的脱氢酶类,它们各自由2个不同的结构域组成,但它们与NAD+结合的结构域构象则基本相同。

(三)蛋白质的结构

蛋白质的多肽链在各种二级结构的基础上再进一步盘曲或折迭形成具有一定规律的三维空间结构,称为蛋白质的结构(tertiary structure)。蛋白质结构的稳定主要靠次级键,包括氢键、疏水键、盐键以及范德华力(Van der Wasls力)等。这些次级键可存在于一级结构序号相隔很远的氨基酸残基的R基团之间,因此蛋白质的结构主要指氨基酸残基的侧链间的结合。次级键都是非共价键,易受环境中pH、温度、离子强度等的影响,有变动的可能性。二硫键不属于次级键,但在某些肽链中能使远隔的二个肽段联系在一起,这对于蛋白质结构的稳定上起着重要作用。

具备结构的蛋白质从其外形上看,有的细长(长轴比短轴大10倍以上),属于纤维状蛋白质(fibrous protein),如丝心蛋白;有的长短轴相不多基本上呈球形了解蛋白质三维结构有非常广泛的作用,比如细胞表面的receptor和ligand,属于球状蛋白质(globular protein),如血浆清蛋白、球蛋白、肌红蛋白,球状蛋白的疏水基多聚集在分子的内部,而亲水基则多分布在分子表面,因而球状蛋白质是亲水的,更重要的是,多肽链经过如此盘曲后,可形成某些发挥生物学功能的特定区域,例如酶的活性中心等。

(四)蛋白质的四级结构

具有二条或二条以上结构的多肽链组成的蛋白质,其多肽链间通过次级键相互组合而形成的空间结构称为蛋白质的四级结构(quarternary structure)。其中,每个具有结构的多肽链单位称为亚基(subunit)。四级结构实际上是指亚基的立体排布、相互作用及接触部位的布局。亚基之间不含共价键,亚基间次级键的结合比二、结构疏松,因此在一定的条件下,四级结构的蛋白质可分离为其组成的亚基,而亚基本身构象仍可不变。

一种蛋白质中,亚基结构可以相同,也可不同。如烟草斑纹的外壳蛋白是由2200个相同的亚基形成的多聚体;正常人血红蛋白A是两个α亚基与两个β亚基形成的四聚体;天冬氨酸氨甲酰基转移酶由六个调节亚基与六个催化亚基组成。有人将具有不同亚基的最小单位称为原聚体(protomer),如一个催化亚基与一个调节亚基结合成天冬氨酸氨甲酰基转移酶的原聚体。

某些蛋白质分子可进一步聚合成聚合体(polymer)。聚合体中的重复单位称为单体(monomer),聚合体可按其中所含单体的数量不同而分为二聚体、三聚体……寡聚体(oligomer)和多聚体(polymer)而存在,如胰岛素(insulin)在体内可形成二聚体及六聚体。

三、蛋白质的结构与功能的关系

蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和侧链R基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。

一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的别,而且在系统发生上进化位置相距愈近的异愈小(表1-2,表1-3)。

表1-2胰岛素分子中氨基酸残基的异部分

胰岛素来源 氨基酸残基的异部分

A5 A6 A10 A30

猪 Thr Ser Ile Ala

狗 Thr Ser Ile Ala

兔 Thr Ser Ile Ser

牛 Ala 离子键Ser Val Ala

羊 Ala Gly Val Ala

马 Thr Gly Ile Ala

鲤猄 Ala Ser Thr Ala

表1-3细胞色素C分子中氨基酸残基的异数目及分歧时间

人-马 12 70-75

人-狗 10 70-75

猪-牛-羊 0

马-牛 3 60-65

哺乳类-鸡 10-15 280

哺乳类-猢 17-21 400

脊椎动物-酵母 43-48 1,100

促肾上腺皮质素(A蛋白质分子结构一般分为四级。CTH)和促黑激素(MSH)均垂体分泌的多肽激素。α-MSH和ACTh 4~10位的氨基酸结构与β-MSH的11~17位一样,故ACTH有较弱的MSH的生理作用(图1-12)。

在蛋白质的一级结构中,参与功能活性部位的残基或处于特定构象关键部位的残基,即使在整个分子中发生一个残基的异常,那么该蛋白质的功能也会受到明显的影响。被称之为“分子病”的镰刀状红细胞性贫血仅仅是574个氨基酸残基中,一个氨基酸残基即β亚基N端的第6号氨基酸残基发生了变异所造成的,这种变异来源于基因上遗传信息的突变。

图1-12ACTH、α-MSH和β-MSH一级结构比较

正常 DNA ……TGt GGG CTT CTT TTT……

mRNA ACA CCC GAA GAA AAA

异常 DNA ……TGT GGG GAT CTT TTT……

mRNA ……ACa CCC GUA GAA AAA……

(二)蛋白质空间橡象与功能活性的关系

蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋白质在复性后,构象复原,活性即能恢复。

在生物体内,当某种物质特异地与蛋白质分子的某个部位结合,触发该蛋白质的构象发生一定变化,从而导致其功能活性的变化,这种现象称为蛋白质的别构效应(allostery)。

现以血红蛋白(hemoglobin,简写Hb)为例来说明构象与功能的关系。

血红蛋白是红细胞中所含有的一种结合蛋白质,它的蛋白质部分称为珠蛋白(globin),非蛋白质部分(辅基)称为血红素。Hb分子由四个亚基构成,每一亚基结合一分子血红素。正常Hb分子的四个亚基为两条α链,两条β链。α链由141个氨基酸残基组成,β链由146个氨基酸残基组成,它们的一级结构均已确定。每一亚基都具有的结构,各肽链折叠盘曲成一定构象,β亚基中有8个α-螺旋区(分别称A、B……H螺旋区),α亚基中有7个α-螺旋区。在此基础上肽链进一步折叠形成球状,依赖侧链间形成的各种次级键维持稳定,使之球形表面为亲水区,球形向内,在E和F螺旋段间的20多个巯水氨基酸侧链构成口袋形的疏水区,辅基血红素就嵌接在其中,α亚基和β亚基构象相似,,四个亚基α2β2聚合成具有四级结构的Hb分子。在此分子中,四个亚基沿轴排布四方,两α亚基沿不同方向嵌入两个β亚基间,各亚基间依多种次级健联系,使整个分子呈球形,这些次级键对于维系Hb分子空间构象有重要作用,例如在四亚基间的8对盐键,它们的形成和断裂将使整个分子的空间构象发生变化。

ABCDEFGH分别代表不同的α-螺旋区。共有八个螺旋区;数字代表在该区氨基酸残基的序号;a-螺旋区之间的移行部位为无规卷曲,用AB,CD,EF,FG…等表示。C1,E7,C5,CF,C3,E3,的中间为血红素,其中较大的黑点代表Fe2+.

Hb在体内的主要功能为运输氧气,而Hb的别位效应,极有利于它在肺部与O2结合及在周围组织释放O2.

Hb是通过其辅基血红素的Fe++与氧发生可逆结合的,血红素的铁原子共有6个配位键,其中4个与血红素的吡咯环的N结合,一个与珠蛋白亚基F螺旋区的第8位组氨酸(F8)残基的咪唑基的N相连接,空着的一个配位键可与O2可逆地结合,结合物称氧合血红蛋白。

在血红素中,四个吡咯环形成一个平面,在未与氧结合时Fe++的位置高于平面0.7,一旦O2进入某一个α亚基的疏水“口袋”时,与Fe++的结合会使Fe++嵌入四吡咯平面中,也即向该平面内移动约0.75,铁的位置的这一微小移动,牵动F8组氨酸残基连同F螺旋段的位移,再波及附近肽段构象,造成两个α亚基间盐键断裂,使亚基间结合变松,并促进第二亚基的变构并氧合,后者又促进第三亚基的氧合使Hb分子中第四亚基的氧合速度为亚基开始氧合时速度的数百倍。此种一个亚基的别构作用,促进另一亚基变构的现象,称为亚基间的协同效应(cooperativity),所以在不同氧分压下,Hb氧饱和曲线呈“S”型。

总结蛋白质形成的结构层次

5.

.蛋白质一级结构

超二级结构进一步组合形成一定功能

:氨基酸序列,

化学键

、二硫键

蛋白质

二级结构现也有认为蛋白质的结构是指蛋白质分子主链折叠盘曲形成构象的基础上,分子中的各个侧链所形成一定的构象。侧链构象主要是形成微区(或称结构域domain)。对球状蛋白质来说,形成疏水区和亲水区。亲水区多在蛋白质分子表面,由很多亲水侧链组成。疏水区多在分子内部,由疏水侧链集中构成,疏水区常形成一些“洞穴”或“口袋”,某些辅基就镶嵌其中,成为活性部位。

:蛋白质分子中局部肽段主链原子的

位置,化学键:氢键

蛋白质结构

模体

R基团的相互作用,整条

肽链

进行范围广泛的折叠和盘曲,化学键:疏水键、

、氢键、

范德华力

蛋白质四级结构

:蛋白质分子中各个

亚基

的空间排布及亚基接触部位的布局,化学键:疏水键、氢键、离子键

满意请采纳

谢谢

蛋白质怎样组成的

一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

蛋白质:由a-氨基酸结合而成的多肽链,再由一条和一条以上的肽链按各种方式组合而成的高分子。

DNA(β亚基) N端…苏-脯-谷-谷-赖……

蛋白质是高分子化合物,结构相当复杂,它由许多氨基酸组成,氨基酸是构是指构成多肽链的氨基酸排列顺序组成蛋白质的基本单位。

答;是笨蛋加加弱智混成了蛋白质

蛋是笨蛋,白是,质是弱智。

蛋白质的化学组成

通过其序列,用电脑来推算。第二种方法还在研究中。

组成蛋白质的主要化学成分是氨基酸。所以蛋白质一定包含的元素是c(碳)、h(氢)、o(氧)、n(氮),有些蛋蛋白质结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。结构是在二级结构的基础上进一步盘绕,折叠形成的。结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。白质可能还会含有p、s、fe(铁)、zn(锌)、cu(铜)、b(硼peng)、mn(锰)、i(碘)、mo(钼)等元素

元素组成。

什么是蛋白质的1234级结构,维系这些结构的主要化学键是什么?

:四级结构:多亚基蛋白质分子中各个具有结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。在二级结构和

蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、、四级结构,蛋白质分子的结构结构特点决定了它的功能。

一级结构:氨基酸残基在蛋白质肽链中的排列顺序称为蛋白质的一级结构。每种蛋白质都有而确切的氨基酸序列。

二级结构。:蛋白质分子中肽链并非直链状,而是按一定的规律卷曲(如α-螺旋结构)或折叠(如β-折叠结构)形成特定的空间结构,这是蛋白质的二级结构。

蛋白质的二级结构主要依靠肽链中氨基酸残基(—NH—)上的氢原子和羰基上的氧原子之间形成的氢键而实现的,氢键是稳定二级结构的主要作用力。

结构:在二级结构的基础上,肽链还按照一定的空间结构进一步形成更复杂的结构。整条肽链中全部氨基酸残基的相对空间位置,即整条肽链的三维空间结构。结构的形成和稳定主要靠疏水键、盐键、二硫键、氢键等。

四级结构:每一条多肽链都有其完整的结构,称为亚基。亚基与亚基之间呈特定的三维空间分布,并以非共价键相链接,这种蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,即寡聚蛋白中各亚基的空间排布,称为蛋白质的四级结构。蛋白质亚基之间主要通过疏水作用、氢键、离子键等作用力形成四级结构,其中最主要的是疏水作用。

组成蛋白质的基本单位是什么?其结构有何特点

结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。

蛋白质

(占鲜重7-10%,干重50%)

结构

c、h、o、n,有的还有p、s等

单体

2 secondary也叫motif(常见的单位形状),有两种,α-helix(缠绕),β-sheet(扁平)氨基酸

(约20种,必需8种,非必需12种)

由多个氨基酸分子脱水缩合而成,含有多个肽键的化合物,叫多肽。

多肽呈链状结构,叫肽链。一个蛋白质分子含有一条或几条肽链。

由于组成蛋白质的氨基酸的种类、数目、排列次序不同,于是肽链的空间结构千万别,因此蛋白质分子的结构是极其多样的。

功化学结构能

蛋白质的结构多样性决定了它的特异性/功能多样性。

1.

构成细胞和生物体的重要物质:如细胞膜、染色体、肌肉中的蛋白质;

2.

有些蛋白质有催化作用:如各种酶;

3.

4.

有些蛋白质有调节作用:如胰岛素、生长激素等;

有些蛋白质有免疫作用:如抗体。

蛋白质它是由什么组成的?他在吸收和利用时是由什么决定的?

蛋白质一级结构二级结构结构四级结构

蛋白质(或酶)的别构效应,在生物体内普遍存在,这对物质代谢的调节和某些生理功能的变化都是十分重要的。

蛋白质一级结构二级结构结构四级结构如下:

二级结构:蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。

蛋白质是以氨基酸为基本单位构成的生物大分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、、四级结构,蛋白质分子的结构决定了它的功能。

蛋白质(protein)是组体蛋白质的四级结构一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。

蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。

机体中的每β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20种氨基酸(Amino acid)按不同比例组合而成的,并在体内不断进行代谢与更新。

什么是蛋白质的空间结构

目前分析其结构有两种方法,一个是用x-ray crystallography,另外就是

蛋白质的结构

(一)蛋白质的一级结构与其构象及功能的关系

蛋白质的生物活性不仅决定于蛋白质分子的一级结构,而且与其特定的空间结构密切相关。异常的蛋白质空间结构很可能导致其生物活性的降低、丧失,甚至会导致疾病,疯牛病,Alzheimer's 症等都是由于蛋白质折叠异常引起的疾病。蛋白质如何在细胞内正确地折叠?为什么这个过程有时会失败?过去四十年间关于蛋白质折叠过程的研究集中在当变性剂被缓冲液稀释后变性的蛋白质如何再重新折叠这一问题上。但是这样的体外研究与真正的细胞内情况相去甚远。强调活体细胞内的蛋白质正常折叠、异常折叠的研究,尤其是折叠催化剂、分子伴侣和大分子的参与是这一领域目前的研究热点。在功能和结构细节上阐明关于蛋白质折叠的过程将对相关疾病的预防和治疗有重要意义。

不同种属 氨基酸残基的异数目 分歧时间(百万年)

肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参与肽链形成的氮原子,碳原子和它们的4个取代成分:原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。

蛋白质一级结构(primary structure):指蛋白质价连接的氨基酸残基的排列顺序。

蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。

蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有结构多肽(亚基)以适当方式聚合所呈现的三维结构。

超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。

结构域(domain):在蛋白质的结构内的折叠单元。结构域通常都是几个超二级结构单元的组合。

二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。

范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。

α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm.

β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:个氨基酸残基与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。

更正一下楼上

α-螺旋(α-heliv):蛋白质中常见的二级结构......

简单地说就是amino acids 组成的peptide,在三维空间里缠绕成的3D结构

一共有四层,

3 Tertiary蛋白质总结构

4 Quanternary多个蛋白质形成的结构。

之间就是通过结构互补来时间两者之间的结合的。

另外在基因表达控制的过程中,acitivator蛋白质和DNA分子也是结构互补,从而实现控制的功能。

还有在物研究过程中,物通常也要与其目标蛋白质实现结构,化学上的吻合。

蛋白质的空间结构就是指二级结构以上的结构,是蛋白质在空间的形象

就是蛋白质分子的空间结构。