无理数是什么

无理数是指小数点后有无限多个数字,但是它们都不循环,最经典的无理数就是π和e,最早是由毕氏学派的希伯索斯在正方形的对角线长度中发现的,与学派中“万物皆有理”是相违背的,因此也引发了数学史上三大危机之一的无理数危机。

无理数是什么 无理数是什么意思举个例子无理数是什么 无理数是什么意思举个例子


无理数是什么 无理数是什么意思举个例子


无理数是什么?

无理数就是无限不循环小数,在公元前500年,希伯索斯发现如果一个正方形的边长为1,那么它的对角线将是一个无法穷尽而且没有规律的数字,但是在这之前,古希腊人都认为世界上只有有理数才是真理,但事实上有理数是无法填满一整条直线上的所有点的。

无理数是怎么来的?

之后毕氏学派就将违背“真理”的数字称为“无理”,还将发现者希伯索斯当做“”,利用活埋来威胁他,最终将其淹在海中,因为这一发现,直接指出了有理数的极大缺陷,完全的推翻了毕氏学派有理数的幻想。

也曾将不可通约的数字,称为“无理的数”,直到1872年,德国数学家戴德金才明确的定义了无理数,并将其加入数学理论中,这才结束了历经2000年的次数学危机。

无理数是什么意思

无理数的意思是:10进制下的无限不循环小数。

在教学中,无理数是所有不是有理数字的实教,后者是由整教的比率或分构成的字。无理教,也称为无限不环小数,不能写作两整勃之比,若将它写成小教形式,小数点之后的数字有无限多个,并且不会循环。

无理数的表示方法:实数集的表示方法为Q,无理数集相当于实数集中有理数集的补集,所以无理数符号为CrQ。

无理数在位置教字系统中表示(倾如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包数字的子序列。例如,数字的十进制表示以3.141592653589793开始,但没有有限数字的数字可以地表示n,也不重复。

历史:

毕达哥拉斯(Pythagoras,约公元前580年至公元前500年间)是古希腊的大数学家。他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。

毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“万物皆为数”的观点:数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。

什么叫做无理数?

无理数

有理数包括(整数,有限小数,无限循环小数)

无理数指无限不循环小数

特别要注意的是无限循环小数 很多人常误以为它属于无理数

等到了高中{有理数}={分数}={循环小数

什么是无理数

无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

无理数指的是什么

无理数是指除有理数以外的实数,当中的“理”字来自于拉丁语的rationalis,意思是“理解”,实际是拉丁文对于logos“说明”的翻译,是指无法用两个整数的比来说明一个无理数。

无理数的定义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。

无理数是在实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如π、√2等。

无理数和有理数有哪些区别

1.性质不同

有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

2.范围不同

有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。

3.结构不同

有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。