高中物理霍尔效应是在人教版哪一本课本的哪一章?

霍尔元件具有测量磁场、电流、速度、位置等多种物理量的功能,在电子、机械、仪器等领域都有着广泛的应用。

高中物理霍尔效应是在高二物理人教版选修3-2,章电磁感应现象。

霍尔元件高中物理知识点 霍尔元件高中物理知识点载流子霍尔元件高中物理知识点 霍尔元件高中物理知识点载流子


霍尔元件高中物理知识点 霍尔元件高中物理知识点载流子


霍尔效应:置于磁场中的载流体,如果电流方向与磁场方向垂直,则垂直于电流和磁场方向会产生一个附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。

霍尔效应从本质上讲是运动的带电粒子在磁。这个电势也被称为场中受到洛伦兹力作用而引起的偏转,所以可以用高中物理中的电磁学、力学、运动学等有关知识来进行解释。霍尔效应原理的应用常见的有:霍尔元件、磁流体发电机、电磁流量计、磁强计等。

高中物理~请问大家,这是霍尔元件的推导,但是这里宽度a可以直接代入吗?载流子不是均匀分布在薄片中的

霍尔元件是一种半导体磁电器件,它是利用霍尔效应来进行工作的。早在1879年人们就在金属中发现了霍尔效应,10年就有人用铋制成了霍尔元件,用以测量磁场。但由于这种效应在金属中十分微弱,当时并没有引起什么重视。

载流子在元件中运动时因为有磁场会在垂直磁场方其中,n是单位体积内的电荷数,A是导体的横截面积。将上述两个方程联立,可以得到:向上形成电势啊,所以当载流子受力平衡时,有qE=qVB=qU/d 得V=U/Bd

霍尔元件的电压怎么算?

四、传感器的应用实例:

1在这里,我们设磁场B在导体的宽度方向上是均匀的。因此,上述积分可以简化为:、霍尔电压E=KIB,K为灵敏度系数,I为工作电流,B为与霍尔片及I垂直的磁感应强度的分量。

2、工作电流为交变电流时,如果外磁场是恒定磁场,霍尔电压为与工作电流同频率的电压信号。

一道高中关于霍尔元件的物理题~~

霍尔3、如果外部磁场也是交变磁场,霍尔电压的波形为两个信号的乘积的波形,如果工作电流和外磁场是同频正弦波,电压为包含直流分量的倍频的正弦波(相位90°时,不含直流分量)。效应

B。首先,要分析“载流子”是正电荷(空穴,元件由半导体制成)还是自由电子(由导体制成)

之后再用左手定则判断F洛,电势就出来了

D。因为在两极时,B竖直向下或向上,再看图中B的方向就明白了

高二物理知识点归纳总结

V = R_H × I × B

还不清楚高二物理知识点有哪些的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“高二物理知识点归纳总结”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!

高二物理知识点归纳总结

1、有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器.它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。

2、光敏电阻在光照射下电阻变化的原因:有些物质,例如,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。光照越强,光敏电阻阻值越小。

3、金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。

金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较。

二、传感器的应用(一)

1.光敏电阻。

2.热敏电阻和金属热电阻。

3.电容式位移传感器。

4.力传感器————将力信号转化为电流信号的元件。

5.霍尔元件。

霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件。

外部磁场使运动的载流子受到洛伦兹力,在导体板的一侧聚集,在导体板的另一侧会出现多余的另一种电荷,从而形成横向电场;横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板左右两例会形成稳定的电压,被称为霍尔电势或霍尔电压。

1.传感器应用的一般模式。

2.传感器应用:

力传感器的应用—霍尔效应—电子秤。

温度传感器的应用——电熨斗、电饭锅、测温仪。

光传感器的应用——鼠标器、火灾报警器。

1、光控开关。

2、温度报警器。

五、传感器定义

“传感器”在新韦式大词典中定义为:“从一个系统接受功率,通常以另一种形式将功率送到第二个系统中的器件”。

六、主要作用

人们为了从外界获取信息,必须借助于感觉器官。

而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。

新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或状态,并使产品达到的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。

在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到s的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。

显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。

传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。

由此可见,传感器技术在发展经济、推动进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。

拓展阅读:怎么做好高考物理复习工作

1、抓住高考说明,把握高考走向

高考复习要明确复习方向,学会察上观下,从考试说明解读考什么;从近年试题解析怎么考;从个人现实明确怎么办。有的放矢、主动高效。

2、抓住物理课本,落实基础知识

课本是学习之本,是知识的载体,同时也是高考命题的重要参考。大多高考题在课本中都可以找到原型,所以抓纲务本。方可落实“五基”即:基本概念、基本规律、基本实验、基本模型、基本方法。

3、抓住课堂复习,提高复习质量

课堂是学习的主战场,听课是主业,跟老师思路走,抓知识方法重点,力争当堂明白。注意,预习了才能真正的跟上老师的思路,跟上思路了才能抓重点,所有学生都要把握的重点就是公共重点,但重要的是要捉住自己个性化的重点,每个人的知识点认知和把握情景是不一样的,各有各的需求,自己缺什么就抓什么,重点一定要有个性化,要听懂个性化的重点,当堂消化掉。

4、抓住网络建立,形成知识体系

要想落实知识,形成能力、提上科学素养,就必须注重知识体系、方法体系两大体系的建立,把知识点穿成知识线,把知识线织成成知识面,把知识面构成知识体。左勾右联、上挂下牵把知识形成一个有机的体系。只有这样,才能做到对知识全面理解。

高考物理选择题答题技巧有哪些

有些选择题选项的代数表达式比较复杂,需经过比较繁琐的公式推导过程,此时可在不违背题意的前提下选择一些能直接反应已知量和未知量数量关系的特殊值,代入有关算式进行推算,依据结果对选项进行判断。

二、“二级结论”法

“二级结论”是由基本规律和基本公式导出的推论。熟记并巧用一些“二级结论”可以使思维过程简化,节约解题时间。非常实用的二级结论有:(1)等时圆规律;(2)平抛运动速度的反向延长线过水平位移的中点;(3)不同质量和电荷量的同性带电粒子由静止相继经过同一加速电场和偏转电场,轨迹重合;(4)直流电路中动态分析的“串反并同”结论;(5)平行通电导线同向相吸,异向相斥;(6)带电平行板电容器与电源断开,改变极板间距离不影响极板间匀强电场的强度等。

三、逆向思维法

在解决某些物理问题的过程中直接入手有一定的难度,改变思考问题的顺序,从相反的方向进行思考,进而解决问题,这种解题方法称为逆向思维法。逆向思维法的运用主要体现在可逆性物理过程中(如运动的可逆性、光路的可逆性等),也可运用反证归谬法等,逆向思维法是一种具有创造性的思维方法。

四、等效替换法

等效替换法是把陌生、复杂的物理现象、物理过程在保证某种效果、特性或关系相同的前提下,转化为简单、熟悉的物理现象、物理过程来研究,从而认识研究对象本质和规律的一种思想方法。等效替换法广泛应用于物理问题的研究中,如:力的合成与分解、运动的合成与分解、等效场、等效电源等。

五、估算法

有些选择题本身就是估算题,有些貌似要计算,实际上只要通过物理方法(如:数量级分析),或者数学近似计算法(如:小数舍余取整),进行大致推算即可得出。估算是一种科学而有实用价值的特殊方法,可以大大简化运算,帮生快速地找出正确选项。

六、类比分析法

所谓类比分析法,就是将两个(或两类)研究对象进行对比,分析它们的相同或相似之处、相互的联系或所遵循的规律,然后根据它们在某些方面有相同或相似的属性,进一步推断它们在其他方面也可能有相同或相似的属性的一种思维方法。在处理一些物理背景很新颖的题目时,可以尝试着使用这种方法。

七、极限思维法

将某些物理量的数值推向极值(如设动摩擦因数趋近零或无穷大、电源内阻趋近零或无穷大、物体的质量趋近零或无穷大、斜面的倾角趋于0°或90°等),并根据一些显而易见的结果、结论或熟悉的物理现象进行分析和推理的一种办法。

对称情况存在于各种物理现象和物理规律中,应用这种对称性可以帮助我们直接抓住问题的实质,避免复杂的数学演算和推导,快速解题。

九、比较排除法

通过分析、推理和计算,将不符合题意的选项一一排除,最终留下的就是符合题意的选项。如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中只可能有一种说法是正确的,当然,也可能两者都错。

高中物理,霍尔效应的原理与应用

根本”其实就是利用了“洛伦兹力”的原理的传感器,他可以探测磁场,因为只要一有磁场就会产生电势(电压),磁场的有无不容易探测,所以就用转化成电压来表示。高中物理中有些涉及,如果还不明白在call我吧!

7.(2018山西五市联考)如图所示的金属导体,长宽d、高h导体中通有沿x轴正方向的恒定电流1,空间存在沿x轴负方向的匀强磁场,磁感应强度为B,已知金属导体中单位体积内自由电子数为n,电子电荷量为e,则下列说确的是

霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP以及多层半导体异质结构量子阱材料等等。

高中物理:霍尔效应什么是霍尔效应

标准GB766所以,霍尔效应公式可以表示为:5-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(E.H.Hall,1855—1938)于1879年在研究金属的导电机制时发现的。当电流垂直于外磁场通过导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在导体的两端产生电势,这一现象就是霍尔效应,这个电势也被称为霍尔电势。霍尔效应应使用左手定则判断。

霍尔元件的霍尔效应系数怎样计算的啊?

也就是说,霍尔电压与电流及磁感应强度的乘积成正比。

霍尔系数计算公式

电势。霍尔效应应使用

霍尔系数的公式:Bqv=Uq/aI。霍尔系数(又称霍尔常数)RH在磁场不太强时,霍尔电势UH与激励电流I和磁感应强度B的乘积成正比,与霍尔片的厚度δ成反比。

霍尔系数计算公式为:Rh=Ud/IB,其中U为霍尔电压,单位mV,d为霍尔元件厚度,单位为μm,I为工作电流,单位为mA,B为磁场强度,单位为T。

霍尔元件基本参数及磁场分布的测量

导体

1948年后,由于半导体技术的迅速发展,人们找到了霍尔效应较为显著的半导体材料——锗,接着,在1958年前后,人们又对化合物半导体——锑化铟、砷化铟进行了大量的研究,并制成了较为满意的元件。这时霍尔效应以及它所具有的广泛的应用才受到了人们普遍的重视。

电流传感器:霍尔元件还可以被应用于电流测量中,实现无接触、大电流测量的目的。通过霍尔元件感知被测电流所产生的磁场,从而测量电流的大小。

霍尔元件是一种基于霍尔效应的磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔元件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高,耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。