列举几个以数学家命名的微分方程?

电浆是自由电子、带等量正电荷的离子以及中性粒子的体。电浆在磁场作用下有特殊的运动规律。研究电浆的运动规律的学科称为电浆动力学和电磁流体力学(见电流体动力学,磁流体力学)。它们在受控热核反应、磁流体发电、宇宙气体运动(见宇宙气体动力学)等方面有广泛的套用。 环境流体力学

伯努利微分方程(形如y'+P(x)y=Q(x)y^n的微分方程,称为伯努利微分方程,其中n≠0并且n≠1,其中P(x),Q(x)为已知函数,因为当n=0,1时该方程是线性微分方程。它以雅各布·伯努利(Jacob Bernoulli)命名,他在1695年进行了研究。伯努利方程是特殊的,因为它们是具有已知解的非线性微分方程。 伯努利方程的特殊情况是逻辑微分方程。)

纳维斯托克斯方程 三维纳维斯托克斯方程纳维斯托克斯方程 三维纳维斯托克斯方程


纳维斯托克斯方程 三维纳维斯托克斯方程


大气和水是最常见的两种流体。大气包围着整个地球,地球表面的百分之七十是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容,属于地球流体力学范围。 水动力学

纳维-斯托克斯方程(方程如下:(axD+bxD+c)y=f(x)(只是其中一种形式,还有泛函极值条件的微分表达式等),这是韦东奕的课坐在讲台下的都是各省市的高考状元,但是,一个学期能够坚持听韦东奕课程的高考状元们却寥寥无几!大多数的学生表示韦东奕的课听不懂,根本不是在一个维度,根本跟不上!为此有非常多学习成绩非常的学生对自己产生了质疑,进而更换了自己的专业!当然,坚持下来的学生却认为,听韦东奕的课非常有收获,可以让自己一下子就打开思路,一些存在脑海里非常久的难题一下子就可以迎刃而解!其实,韦东奕的课程的确难,但只能说水平不够者肯定觉得难,但是,水平非常在线的人则不会觉得难!属于无粘性流体动力学(理想流体力学)中最重要的基本方程,是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程,它描述理想流体的运动规律。奠定了理想流体力学基础。)

雷诺模型法适用于

后来人们在进一步的研究中知道,牛顿粘性实验定律(以及在此

湍流的平均运动方程(见粘性不可压缩流体动力学)。提出这一方程的英国物理学家O.雷诺认为,粘性不可压缩流体作湍流运动时,流场中的瞬时参量:压力p和速度分量u、v、w 仍旧满足纳维-斯托克斯方程,并可将该瞬时参量分解为时间平均值p、u、v、w和在时间平均值上下涨落的脉动值p′、u′、v′、w′,将其代入上述方程并取时间平均后,可得到用平均量表示的湍流运动方程式。雷诺本人采用的是时间平均法,后液等多种体液以及像细胞质那样的“半流体”都属于非牛顿流体.现人也有采用统计平均法的,这些都称为雷诺方程。在直角坐标系中,单位质量的平面流动雷诺方程是:在x方向投影:

杨一米尔斯方程(杨一米尔斯方程(Yang-Mills equation)是一个重要的微分方程,指杨一米尔斯作用量所确定的欧拉一拉格朗日方程。由物理学家杨振宁和米尔斯在1954年首先提出来的)

流体力学详细资料大全

牛顿流体

力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。

湍流的平均运动方程

基本介绍 中文名 :流体力学 外文名 :fluid mechanics 发展简史,学科内容,研究方法,现场观测,实验室模拟,理论分析,数值计算,展望, 发展简史 出现 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。有大禹治水疏通江河的传说。秦朝李冰父子(公元前3世纪)劳动修建了,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统。 对流体力学学科的形成作出贡献的首先是古希腊的阿基米德。他建立了包括物体浮力定理和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪义大利达·文西的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题。 17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 发展 17世纪力学奠基人I. 牛顿研究了在液体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他对粘性流体运动时的内摩擦力也提出了以下设:即两流体层间的摩阻应力同此两层的相对滑动速度成正比而与两层间的距离成反比(即牛顿粘性定律)。 之后,法国H. 皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的L. 欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。 从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国J.-L. 拉格朗日对于无旋运动,德国H. von 亥姆霍兹对于涡旋运动作了不少研究.上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体,所以这种理论阐明不了流体中粘性的效应。 理论基础 将粘性考虑在内的流体运动方程则是法国C.-L.-M.-H. 纳维于1821年和英国G. G. 斯托克斯于1845年分别建立的,后得名为纳维-斯托克斯方程,它是流体动力学的理论基础。 由于纳维-斯托克斯方程是一组非线性的偏微分方程,用分析方法来研究流体运动遇到很大困难。为了简化方程,学者们采取了流体为不可压缩和无粘性的设,却得到违背事实的达朗伯佯谬——物体在流体中运动时的阻力等于零。因此,到19世纪末,虽然用分析法的流体动力学取得很大进展,但不易起到促进生产的作用。 与流体动力学平行发展的是水力学(见液体动力学)。这是为了满足生产和工程上的需要,从大量实验中总结出一些经验公式来表达流动参量之间关系的经验科学。 使上述两种途径得到统一的是边界层理论。它是由德国L. 普朗特在1904年创立的。普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地套用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。 伯努利定理 飞机和空气动力学的发展 20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以茹科夫斯基、恰普雷金、普朗特等为代表的科学家,开创了以无粘不可压缩流 势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。 机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的套用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。 分支和交叉学科的形成 从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。 以这些理论为基础,20世纪40年代,关于或天然气等介质中发生的爆轰波又形成了新的理论,为研究核、等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。 这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。 20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中套用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。21世纪以来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和分方法的互相渗透和融合。 学科内容 基本设 连续体设 物质都由分子构成,尽管分子都是离散分布的,做无规则的热运动.但理论和实验都表明,在很小的范围内,做热运动的流体分子微团的统计平均值是稳定的.因此可以近似的认为流体是由连续物质构成,其中的温度,密度,压力等物理量都是连续分布的标量场. 质量守恒 质量守恒目的是建立描述流体运动的方程组.欧拉法描述为:流进坐标系中任何闭合曲面内的质量等于从这个曲面流出的质量,这是一个积分方程组,化为微分方程组就是:密度和速度的乘积的散度是零(无散场).用欧拉法描述为:流体微团质量的随体导数随时间的变化率为零。 动量定理 流体力学属于经典力学的范畴。因此动量定理和动量矩定理适用于流体微元。 应力张量 对流体微元的作用力,主要有表面力和体积力,表面力和体积力分别是力在单位面积和单位体积上的量度,因此它们有界。由于我们在建立流体力学基本方程组的时候考虑的是尺寸很小的流体微元,因此流体微团表面所受的力是尺寸的二阶小量,体积力是尺寸的三阶小量,故当体积很小时,可以忽略体积力的作用。认为流体微团只是受到表面力(表面应力)的作用。非各向同性的流体中,流体微团位置不同,表面法向不同,所受的应力是不同的,应力是由一个二阶张量和曲面法向的内积来描述的,二阶应力张量只有三个量是的,因此,只要知道某点三个不同面上的应力,就可确定这个点的应力分布情况。 粘性设 流体具有粘性,利用粘性定理可以导出应力张量。 能量守恒 具体表述为:单位时间内体积力对流体微团做的功加上表面力和流体微团变形速度的乘积等于单位时间内流体微团的内能增量加上流体微团的动能增量。 流体力学分支 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体。所以流体力学是与人类日常生活和生产事业密切相关的。 地球流体力学

水在管道、渠道、江河中的运动从古至今都是研究的对象。人们还利用水作功,如古老的水碓和近代高度发展的水轮机。船舶一直是人们的交通运输工具,船舶在水中运动时所遇到的各种阻力,船舶稳定性以及船体和推进器在水中引起的空化现象,一直是船舶水动力学的研究课题。这些研究有关水的运动规律的分支学科称为水动力学。 气动力学

20世纪初世界上架飞机出现以来,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成果的领域。 渗流力学

石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。 物理-化学流体动力学

燃烧煤、石油、天然气等拉普拉斯方程(又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。),可以得到热能来推动机械或作其他用途。燃烧离不开气体。这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。 多相流体力学

沙漠迁移、河流泥沙运动、管道中煤粉输送、化工流态化床中气体催化剂的运动等都涉及流体中带有固体颗粒或液体中带有气泡等问题。这类问题是多相流体力学研究的范围。 电浆动力学和电磁流体力学

生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动(见循环系统动力学、呼吸系统动力学)和植物中营养液的输送(见植物体内的流动)。此外,还研究鸟类在空中的飞翔(见鸟和昆虫的飞行),动物(如海豚)在水中的游动,等等。 因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的套用。以上主要是从研究对象的角度来说明流体力学的内容和分支。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。 研究方法 可以分为现场观测、实验室模拟、理论分析、数值计算四个方面: 现场观测 对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律并藉以预测流动现象的演变。过去对天气的观测和预报,基本上就是这样进行的。但现场流动现象的发生不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。 实验室模拟 在实验室内,流动现象可以在短得多的时间内和小得多的空间中多次重复出现,可以对多种参量进行隔离并系统地改变实验参量。在实验室内,人们也可以造成自然界很少遇到的特殊情况(如高温、高压),可以使原来无法看到的现象显示出来。现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。因此,实验室模拟是研究流体力学的重要方法。但是,要使实验数据与现场观测结果相符,必须使流动相似条件(见相似律)完全得到满足。不过对缩尺模型来说,某些相似准数如雷诺数和弗劳德数不易同时满足,某些工程问题的大雷诺数也难以达到。所以在实验室中,通常是针对具体问题,尽量满足某些主要相似条件和参数,然后通过现场观测验证或校正实验结果。 理论分析 根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下: ①建立“力学模型” 一般做法是:针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最常用的基本模型有:连续介质(见连续介质设)、牛顿流体、不可压缩流体、理想流体(见粘性流体)、平面流动等。 ②建立控制方程 针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。流体运动在空间和时间上常有一定的限制,因此,应给出边界条件和初始条件。整个流动问题的数学模式就是建立起封闭的、流动参量必须满足的方程组,并给出恰当的边界条件和初始条件。 ③求解方程组 在给定的边界条件和初始条件下,利用数学方法,求方程组的解。由于这方程组是非线性的偏微分方程组,难以求得解析解,必须加以简化,这就是前面所说的建立力学模型的原因之一。力学家经过多年努力,创造出许多数学方法或技巧来解这些方程组(主要是简化了的方程组),得到一些解析解。 ④对解进行分析解释 求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。 数值计算 前面提到的采用简化模型后的方程组或封闭的流体力学基本方程组用数值方法求解。电子计算机的出现和发展,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性。数值方法可以部分或完全代替某些实验,节省实验费用。数值计算方法最近发展很快,其重要性与日俱增。 四种研究方法之间的关系: 解决流体力学问题时,现场观测、实验室模拟、理论分析和数值计算几方面是相辅相成的。实验需要理论指导,才能从分散的、表面上无联系的现象和实验数据中得出规律性的结论。反之,理论分析和数值计算也要依靠现场观测和实验室模拟给出物理图案或数据以建立流动的力学模型和数学模式;,还须依靠实验来检验这些模型和模式的完善程度。此外,实际流动往往异常复杂(例如湍流),理论分析和数值计算会遇到巨大的数学和计算方面的困难,得不到具体结果,只能通过现场观测和实验室模拟进行研究。 展望 从阿基米德到现在的二千多年,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛套用。今后,人们一方面将根据工程技术方面的需要进行流体力学套用性的研究,另一方面将更深入地开展基础研究以探求流体的复杂流动规律和机理。后一方面主要包括:通过湍流的理论和实验研究,了解其结构并建立计算模式;多相流动;流体和结构物的相互作用;边界层流动和分离;生物地学和环境流体流动等问题;有关各种实验设备和仪器等。 流体力学的研究领域包括: 理论流体力学 水动力学 气体动力学 空气动力学 悬浮体力学 湍流理论 粘性流体力学 多相流体力学 渗流力学 物理—化学流体力学 电浆动力学 电磁流体力学 非牛顿流体力学 流体机械流体力学 旋转与分层流体力学 辐射流体力学 计算流体力学 实验流体力学 环境流体力学 微流体力学 生物流体力学等

非牛顿性液体的非牛顿流体与牛顿流体

FK 基本释义 abbr. 外键(foreign key) n. 福克兰群岛的域名(Falkland Islands) 网络释义;1, 趋化因子 ,2,大鼠 趋化因子 ( FK ) 的详细资料,3,粉丝我这个应该是最全的了,辛苦查找不易,有用请采纳!酷影视 粉丝酷影视 FK 。4, FK 马尔维那斯群岛 短语 Molde FK莫尔德;莫迪 湍流是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,称为层流,也称为稳流或片流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流。FK fk马尔维那斯群岛 FK SIU萧福祺

FK是什么意思啊?

雷诺方1、欧拉方程是对无粘性流体微团应用牛顿第二定律得到的运动微分方程,是无粘性流体动力学中最重要的基本方程。应用十分广泛,在1755年,由瑞士数学家欧拉在《流体运动的一般原理》一书中首先提出这个方程,欧拉方程是泛函极值条件的微分表达式,求解泛函的欧拉方程,即可得到使泛函取极值的驻函数,将变分问题转化为微分问题,在物理学上,欧拉方程统治刚体的转动。牛顿1687年发表了以水为工作介质的一维剪切流动的实验结果.程

欧拉方程是什么 欧拉方程的理解

方程的基本形式和各项物理意义都与纳维-斯托克斯方程相同。由方括弧给出的一项是雷诺方程的特点,它反映由湍流动量转化的应力(称为湍流应力),是未知量。因此,流动方程组不再封闭。1925年,德国物理学家L.普朗特提出混合长度理论,后来人们又建立了各种数学模型,力图用流场的速度平均值来描述湍流应力,但仍未获得统一的完善的模型,它仍然是湍流理论研究的重要课题。

(2)在流体动力学中,欧拉方程是一组支配无粘性流体运动的方程,以莱昂哈德·欧拉命名。方程组各方程分别代表质量守恒(连续性)、动量守恒及能量守恒,对应零粘性及无热传导项的纳维-斯托克斯方程。历史上,只有连续性及动量方程是由欧拉所推导的。然而,流体动力学的文献常把全组方程--包括能量方程--称为欧拉方程。

风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学(其中包括环境空气动力学、建筑空气动力学)。这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。 生物流变学

(3)跟纳维-斯托克斯方程一样,欧拉方程一般有两种写法:“守恒式”及“非守恒形式”。守恒形式强调物理解释,即方程是通过一空间中某固定体积的守恒定律;而非守恒形式则强调该体积跟流体运动时的变化状态。

(4)欧拉方程可点的速度分别为U和0,两平板间的速度呈线性分布.由此得到了著被用于可压缩性流体,同时也可被用于非压缩性流体--这时应使用适当的状态方程,或设流速的散度为零。

流体的黏性对流体流动有什么作用?

应变率张量的线性函数、流体各向同性、流体静止时应变率为零的三

非依时性流体

庞加莱-勒隆方程(英文:Poincaré–Lelong equation),该方程由皮埃尔·勒隆于1964年研究。在数学上,该方程是一个偏微分方程。)

塑性流体的表观粘度对切应力和剪切速率具有依赖性,随切应力的增大而减小,但当切应力保持恒定时,剪切速率也保持恒定;表观粘度是个常数,不随应力作用的时间而发生变化;这类流体称为非依时性流体.与其相反,有些流体如胶印油墨,在温度不变的情况下,如果剪切速率保持恒定,切应力和表观粘度会随时间延长而减小,或者说它们的流变性受应力作用时间的制约,这种流体称为依时性流体.依时性流体行为称为触变性.

牛顿流体是指在任意小的外力作用下即能流动的流体,并且流动的速度梯度(D)与所加的切应力(τ)的大小成正比,这种流体就叫做牛顿流体.牛顿流体的流变方程是:τ=ηD

D--流动速度梯度;

非牛顿流体

实验是在两平行平板间充满水时进行的(式中:τ--所加的切应力;图1),下平板固定不动,上

名的牛顿粘性定律

斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量是

项设,从而导出了广泛应用于流体力学研究的线性本构方程,以及

现被广泛应用的纳维-斯托克斯方程.

基础上建立的纳-斯方程)对于描述像水和空气这样低分子量的流体

是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与

剪切应变率之间已不再满足线性关系.为区别起见,人们将剪应力与

剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性

关系的流体称为非牛顿流体.

早在人类出现之前,非牛顿流体就已存在,因为绝大多数生物流

体都属于现在所定义的非牛顿流体[1].人身上的血液、淋巴液、囊

在去医院作血液测试的项目之一,已不再说是“血粘度检查”,而是

“血液流变学检查”(简称血流变),这就是因为对血液而言,剪应力与剪切应变率之间不再是线性关系,已无法只给出一个斜率(即粘度)

来说明血液的力学特性.

落球法测量油品的粘滞系数实验中,适用条件是什么?

欧拉方程(即运动微分方程,属于无粘性流体动力学中最重要的基本方程,是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程。)

匀速时阻力=mg,如果m太大粘滞系数太小,永远不会有f=mg。你可以推导出适用条件是什么

η--不依赖于切变速度的常数,叫做黏性系数,简称为黏度

适用于粘度系数较大且具有一定透明度的液体

落球法测量油品的粘滞系数实验中,适用条件是适用于粘度系数较大且具有一定透明度的液体。

实验原理:

平板在其自身平面内以等速U向右运动.此时附于上下平板的流体质 (1)F=6nvg

式中F是小球所受到的粘滞阻力,v是小球的下落速度,r是小球的半径,n是液体的粘度,在SI制中,n的单位是pas。斯托克斯公式是由粘滞液体的普遍运动方程导出的。

流体力学指的是什么?它是如何发展起来的?

瑞士科学世家伯努利家族的重要成员之一。1700年1月29日出生于荷兰的格罗宁根。1782年3月17日卒于格罗柯西-黎曼方程(柯西--黎曼微分方程是提供了可微函数在开集中为全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。)宁根,终生独身。1726~1733年在俄国圣彼堡科学院主持数学部。伯努利具有坚实的数学基础和敏锐的洞察力,解决问题往往表现出他的独创性。1725~1749年间,他曾十次获得法国科学院的奖金。次获奖时仅24岁,当时他设计了一架用于海上测定时间的漏壶。他的研究领域包括数学、力学、磁学、潮汐、洋流、行星轨道等。他曾与瑞士数学家L欧拉和苏格兰数学家C马克流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。有大禹治水疏通江河的传说。秦朝李冰父子(公元前3世纪)劳动修建了,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统。 对流体力学学科的形成作出贡献的首先是古希腊的阿基米德。他建立了包括物体浮力定理和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。15世纪意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题。17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。劳林合作撰写关于潮汐的论文并获奖。1738年他在施特拉斯堡出版了《水动力学》一书,奠定了这一学科的基础,并因此获得了极高的声望。他提出理想流体的能量守恒定律,即单位重量液体的位置势能、压力势能和动能的总和保持恒定,后即称为“伯努利定理”。在此基础上,他又阐述了水的压力、速度之间的关系,提出了流体速度增加则压力减小这一重要结论。伯努利在固体力学方面亦有很多论著,如1735年提出悬臂梁振动方程,1742年提出弹性振动理论中的叠加原理。

层流与湍流的本质区别

2、补充内容:

本质区别是:层流无径向脉动,而湍流有径向脉动;层流是流体流动时,如果流体质点的轨迹是有规则的光滑曲线,没有这种性质的流动则为湍流。层流流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。湍流当流速很小时,流体分层流动,互不混合。

北大韦神一夜之间解开了一博士团队四个月没有解开的难题上了热搜,韦东奕在数学方面的造诣是有目共睹的,但是,韦神也有烦恼,那就是他作为为自己的课没人来上很无能为力!韦东奕的课是非常难的,这已经不是稀松平常的数学课,已经是高纬数学课程!

层流是流体的一种流动状态。流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。此种流动称为层流或滞流,亦有称为直线流动的。流体的流速在管中心处,其近壁处最小。管内流体的平均流速与流速之比等于0.5,根据雷诺实验,当雷诺准数Re

英国科学家牛顿于1687年,发表了以水为工作介质的一维剪切流动的实验结果。实验是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。此时,附着于上、下平板的流体质点的速度,分别是U和0,两平板间的速度呈线性分布,斜率是黏度系数。由此得到了的牛顿黏性定律。

当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生,这种运动称为湍流,又称为乱流、扰流或紊流。

1959年J.欣策曾对湍流下过这样的定义:湍流是流体的不规则运动,流场中各种量随时间和空间坐标发生紊乱的变化,然而从统计意义上说,可以得到它们的准确的平均值。

大多数学者认为应该从纳维-斯托克斯方程出发研究湍流。湍流对很多重大科技问题极为重要,因此,近几十年所采取的做法是针对具体一类现象建立适合它特点的具体的力学模型。例如,只适用于附体流的湍流模型;只适用于简单脱体然后又附体的流动;只适用于翼剖面尾迹的或者只适用于激波和边界层相互作用的湍流模型等等。湍流这个困难而又基本的问题,近年来日益受到了物理学界的重视。