变频电机与普通电机有什么区别

普通电机是通过传动带带动洗衣机转动,变频电机直接通过电机带动洗衣机转动,变频电机噪音小、震动小,普通电机洗起衣服来轰隆隆的声音很大,但是变频电机的要贵一些,希望对您有所帮助。

高频电机和普通电机区别(高频电机原理)高频电机和普通电机区别(高频电机原理)


高频电机和普通电机区别(高频电机原理)


高频电机和普通电机区别(高频电机原理)


普通电机是根据市电的频率和相应的功率设计的,只有在额定的情况下才能稳定运行。变频电机就不同了,变频电机要克服低频时的过热与振动,,所以变频电机在设计上要比普通电机性能要好一点

变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

变频器选型:

变频器选型时要确定以下几点:

1)

采用变频的目的;恒压控制或恒流控制等。

2)

变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。

3)

变频器与负载的匹配问题;

I.电压匹配;变频器的额定电压与负载的额定电压相符。

II.

电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以电流确定变频器电流和过载能力。

III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。

4)

在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。

5)

变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。

6)

对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。

变频电机与普通电机的区别是变频电机自身不带冷却风扇,需另加风机进行散热;普通电机则依靠自带风扇进行散热,运行维护相对简单点。

变频电机比普通电机性能更有,变频电机的具体主要优点有:

1、具备有启动功能

2、采用电磁设计,减少了定子和转子的阻值

3、适应不同工况条件下的频繁变速

4、在一定程度上节能

电机没什么区别,变频器用的电机也是三相异步电机。但是用了变频以后就可以调节电机的速度,以达到节能恒压等目的。

补充一下:变频电机启动力矩大,启动电流小(相对于普通鼠龙)

普通电机可以代替变频电机使用吗?老电工手把手一步步教你,实用的电工技术!

请问哪位什么是高频电机?

高频电机指的是适用于高频电源的电动机,国产的电动机一般电源频率为50HZ

高频电机一般是频率比较高,普通电机一般50hz,高频电机的轴承强度很到,普通电机不能达到高频电机的转速,因为普通电机的轴承强度不行,高频电机价格要比普通电机高很多

高频电机可以接高频电源,一般电机因为绝缘不够会产生很大的漏电流

变频电机和普通电机有什么区别,普通电机加装变频器是否可以用

问题一:变频电机与普通电机的区别:

一、变频电机和普通电机在总体上主要有三方面区别

1、散热系统不一样;普通风机内散热风扇跟风机机芯用同一条线,而变频电机中这两个是分开的。所以普通风机变频过低时,可能会因过热而烧掉。

2、变频电机由于要承受高频磁场,所以绝缘等级要比普通电机高,原则上普通电机是不能用变频器来驱动的,但在实际中为了节约资金,在很多需要调速的场合都用普通电机代替变频电机,但普通电机的调速精度不高,在风机、水泵的节能改造中经常这样做。

在用普通电机代替变频电机时变频器的载波频率尽量低一点,以减少高频对电机的绝缘损坏。变频电机加强了槽绝缘,一是绝缘材料加强,一是加大槽绝缘的厚度,以提高承受高频电压的水平。

3、增大了电磁负荷。普通电机工作点基本在磁饱和拐点,如果用做变频,易饱和,产生较高的激磁电流,而变频电机在设计时增大了电磁负荷,使磁路不易饱和。另外就是变频电机一般分为恒转矩专用电机,用于有反馈矢量控制的带测速装置的专用电机以及中频电动机等。

二、普通电机和变频电机设计上的区别

1、电磁设计

对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转率反比于电源频率,可以在临界转率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。

2、结构设计

在结构设计时,主要也是要考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响。

三、普通电机和变频电机测量上的区别

1、变频器实际输出波形为PWM波,除了基波外,还包含载波信号。载波信号频率要比基波高得多,且是方波信号,包含大量的高次谐波,对于测试系统则要求有更高的采样频率和带宽。

2、变频器供电的环境下,各种高频干扰无处不在,电磁干扰要比工频环境要强得多,这就要求测试系统有更强的电磁兼容能力。

3、PWM波的峰值因数一般都较高,普通仪表根本满足了要求,对于变频测试系统来说,要求有更高的测量峰值因数测量能力。

4、用于变频测试的仪表应具备在各种PWM波形中分解出其基波的能力,严格测量需采用数字信号处理的方式,也就是高速采样得到样本序列,再对样本序列进行离散傅里叶变换,得到基波有幅值、相位及各次谐波的幅值和相位。

就目前变频测量的主流仪器来说,霍尔传感器加变频功率分析仪是很多厂商的一种选择方式,但是这种方式的局限性在不断扩大,主要表现在传输环节的干扰问题很难解决,这是这种测量方式致命伤。而采用基于前端数字化的功率分析仪可以很好的解决这一问题,这也将成为以后变频测量的主要方式。

变频电机之所以节能,并不是变频电机自身的损耗低,反而在非正弦电压、电流下,高次谐波会引起电动机定子铜耗、转子铜耗、铁耗及附加损耗的都会有所增加。

变频电机节能是通过不断调速来适应不同的使用环境,以此来达到减少不必要的损耗的目的,如果同时运行在工频环境中,变频电机与普通电机的区别并不大,甚至变频电机更加耗能,也就是说我们不能盲目的相信变频一定节能的这种宣传。

问题二:

普通电机,若通过变频器改变频率,会有以下影响:

如果你指的是交流异步电机的话,通过变频器改变输出频率,电机的转速相应发生变化。对电机本身的影响确实有发热、有可能的绝缘击穿,过高转速和过低转速下的力矩不够等现象。

对电机本身发热主要有几种原因:

,有些电机的散热风扇和电机主轴是同轴的,降低转速后,散热风扇转速下降导致散热不好,有可能烧电机。

第二,有些变频器的软硬件存在问题,输出的du/dt过大,导致di/dt过大,有可能产生匝间击穿,或者发热的现象,导致的结果还是烧电机。

扩展资料:

频率,是单位时间内完成振动的次数。对于电机,通常频率是指电机的交流输入电源的频率,国内使用的设备适用电源的频率大都是50HZ。

1、频率的作用

2、变频器改变频率,对电机的影响

变频器可以作为一种调速装置来理解,在实际使用中,多用于根据电机的工况调整电机的出力,从而达到满足工艺要求的目的。同时,对于使用电机的具体工况下,这种变频调节转速的方式,比传统的机械调转速的方式的具有一定的节能效果。

3、变频器变频后的发热问题

但对于,功率较大的负载,如3000KW以上的交流电机,就要考虑使用特殊设计的变频电机,即电机本身带有强制风冷或者水冷的散热系统,避免使用过程中电机轴承温度过高,损坏设备。

参考资料:

百度百科——变频电机

百度百科——电机

百度百科——变频器

变频电机与普通电机的区别

在很多场合下,许多机械设备需要对电动机进行变频调速,有的企业选择了变频调速电机来调速,而有的企业则直接选用普通的三相异步电动机来进行调速。变频电机和普通电机的区别有哪些?下面,为您带来“变频电机与普通电机的区别”,希望对你有所帮助,更多内容尽在。

一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响

1、电动机的效率和温升的问题

不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。

高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。

2、电动机绝缘强度问题

目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。

3、谐波电磁噪声与震动

普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。

4、电动机对频繁启动、制动的适应能力

由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。

5、低转速时的冷却问题

首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。

6、变频电机工作原理

拆开的风扇电机的照片,风扇采用的是变频电机,这从线圈所在的位置就可以辨认出来。变频电机控制电路板,控制芯片将集DSP功能与驱动器于一体,简化了电路结构。通过对控制芯片编程,可改变电机转速。

二、变频电动机的特点

1、电磁设计

对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转率反比于电源频率,可以在临界转率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:

1) 尽可能的减小定子和转子电阻。 减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增加

2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。

3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。

2、结构设计

再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般注意以下问题:

1)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘强度,特别要考虑绝缘耐冲击电压的能力。

2)对电机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次力波产生共振现象。

3)冷却方式:一般采用通风冷却,即主电机散热风扇采用的电机驱动。

4)防止轴电流措施,对容量超过160KW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合一起作用时,轴电流将大为增加,从而导致轴承损坏,所以一般要采取绝缘措施。

5)对恒功率变频电动机,当转速超过3000/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。

6) 变频控制原理

Eg=4.44f1N1kn1Φm

控制公式

Eg --气隙磁通在定子每相中的感应电动势的有效值;

f1 --定子频率;

N1 --定子每相绕组的串联匝数;

kn1 --基波绕组系数;

Φm --每极气隙磁通量;

基频以下调速

由式“控制公式”可知,只要Eg /f1保持为常值,就可以保持Φm不变。但是,绕组中的感应电动势是很难直接控制的,在电动势较高时可以忽略定子绕组的阻抗压降而认定U1≈Eg,则有U1 /f1 = 常值;在低频时U1和Eg都比较小,这时不能忽略,可以人为的抬高U1去补尝定子绕组的阻抗压降。

三相变频电机的V/F曲线

基频以上调速

当基频以上调速时,频率往上升高,但U1却不能比额定电压U1n还要大,顶多只能使 U1 =U1n。因此,由式“控制公式”可知,这将迫使磁通与频率成反比,相当于直流电机弱磁升速的情况。

将以上二种情况结合起来就可以得到异步电机的变频调速特性。同时这也是变频电机调速的V/F曲线图。在实际运用中,V/F开环控制也是沿着这条曲线进行的。

三、实际应用情况对比

1,电机的效率和温升在变频驱动下,变频电机效率会高10%左右,而温升会小20%左右,尤其是在矢量控制或者直接转矩控制的低频区域。

2,变频电机对于需要频繁启动、频繁调速、频繁制动的场合,要优于普通电动机。

3,在电磁噪声和振动方面,变频电机在变频驱动时较普通电动机有更低的噪音和更小的电磁振动。

4,电动机的绝缘强度问题。由于变频电机专为变频器驱动设计,所以能承受较大的du/dt,所以变频电动机的绝缘强度要高。尤其是在DTC控制模式下,对电动机的绝缘强度是个很大的考验。

5,主要的区别,还是变频电动机有额外的散热(采用的轴流风机通风),在低频、直流制动和一些特殊应用场合下的散热要大大的优于普通的交流异步电动机。

变频电机与普通电机的区别

变频电机与普通电机的区别:转矩不一样、散热系统不一样、绝缘等级不一样、电磁负荷不一样、机械强度不一样。

1、转矩不一样

变频电机的速度和转矩可控。普通电机转速和转矩是固定的。

2、散热系统不一样

普通电机内散热风扇跟风机机芯用同一条线,而变频电机中这两个是分开的。所以普通风机变频过低时,可能会因过热而烧掉。

3、绝缘等级不一样

变频电机由于要承受高频磁场,所以绝缘等级要比普通电机高,变频电机加强了槽绝缘:绝缘材料加强和加大槽绝缘的厚度,以提高承受高频电压的水平。

4、电磁负荷不一样

普通电机工作点基本在磁饱和拐点,如果用做变频,易饱和,产生较高的激磁电流,而变频电机在设计时增大了电磁负荷,使磁路不易饱和。另外就是变频电机一般分为恒转矩专用电机,用于有反馈矢量控制的带测速装置的专用电机以及中频电动机等。

5、机械强度不一样

变频电机可在其调速范围内可任意调速,而电机不会损坏,一般国产的普通电机大部分只能在AC380V/50HZ的条件下运行,普通电机能降频或升频使用,但范围不能太大,否则电机会发热甚至烧坏。

变频电机与普通电机的区别你知道多少

对普通异步电动机来说,在设计时主要考虑的性能参数是过载能力、起动性能、效率和功率因数。而变频电动机,由于临界转率反比于电源频率,可以在临界转率接近1时直接起动,因此,过载能力和起动性能不再需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。

(1)尽可能地减小定子和转子电阻。减小定子电阻即可降低基 波铜损耗,以弥补高次谐波引起的铜损耗增加。

(2)为了抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜损耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。

(3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和;二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。

在进行结构设计时,主要也是考虑非正弦电源特性对变频电动机的绝缘结构、振动、噪声、冷却方式等方面的影响,一般注意以下问题:

(4)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘 强度,特别要考虑绝缘耐冲击电压的能力。

(5)对电动机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次谐波产生共振现象。

(6)冷却方式:一般采用通风冷却,即主电动机散热风扇采用的电动机驱动。

(7)防止轴电流措施,对容量超过160kW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合在一起作用时,轴电流将大量增加,从而导致轴承损坏,所以一般要采取绝缘措施。

(8)对恒功率变频电动机,当转速超过3000r/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。

在电机节能方面,中科宇杰自主研发的高压电机节电系统以高压变频器为基础,高压变频采用功率单元串联技术,直接输出6kV、10kV电压。由于采用功率单元串联而非功率器件的直接串联,因此解决了器件耐压的问题。主控部分采用DSP+FPGA(即现场可编程门阵列)+PLC的大规模高速集成数字电路控制模式,高速运算可以实现实时电机控制,达到了兼顾高性能和高可靠性的目的。核心控制算法采用空间矢量PWM控制算法,有效提高了直流电压利用率,FPGA实现功率单元脉冲分配算法,实时快速地驱动功率单元,所有单元等功率输出。降低能源损耗,提高电机效率。

变频电机和普通电机有什么区别

对普通异步电动机来说,在设计时主要考虑的性能参数是过载能力、起动性能、效率和功率因数。而变频电动机,由于临界转率反比于电源频率,可以在临界转率接近1时直接起动,因此,过载能力和起动性能不再需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。

(1)尽可能地减小定子和转子电阻。减小定子电阻即可降低基 波铜损耗,以弥补高次谐波引起的铜损耗增加。

(2)为了抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜损耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。

(3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和;二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。

在进行结构设计时,主要也是考虑非正弦电源特性对变频电动机的绝缘结构、振动、噪声、冷却方式等方面的影响,一般注意以下问题:

(4)绝缘等级,一般为F级或更高,加强对地绝缘和线匝绝缘 强度,特别要考虑绝缘耐冲击电压的能力。

(5)对电动机的振动、噪声问题,要充分考虑电动机构件及整体的刚性,尽力提高其固有频率,以避开与各次谐波产生共振现象。

(6)冷却方式:一般采用通风冷却,即主电动机散热风扇采用的电动机驱动。

(7)防止轴电流措施,对容量超过160kW电动机应采用轴承绝缘措施。主要是易产生磁路不对称,也会产生轴电流,当其他高频分量所产生的电流结合在一起作用时,轴电流将大量增加,从而导致轴承损坏,所以一般要采取绝缘措施。

(8)对恒功率变频电动机,当转速超过3000r/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。

在电机节能方面,中科宇杰自主研发的高压电机节电系统以高压变频器为基础,高压变频采用功率单元串联技术,直接输出6kV、10kV电压。由于采用功率单元串联而非功率器件的直接串联,因此解决了器件耐压的问题。主控部分采用DSP+FPGA(即现场可编程门阵列)+PLC的大规模高速集成数字电路控制模式,高速运算可以实现实时电机控制,达到了兼顾高性能和高可靠性的目的。核心控制算法采用空间矢量PWM控制算法,有效提高了直流电压利用率,FPGA实现功率单元脉冲分配算法,实时快速地驱动功率单元,所有单元等功率输出。降低能源损耗,提高电机效率。

电频电机和普通电机有哪些区别

在购买使用电机时很多时候都被购买变频电机,那么变频电机和普通电机的区别到底有什么?

两者的稳定性和使用寿命是不一样的,而且变频电机更省电,它的使用范围更广泛。变频电机的出现主要解决普通电机在低速和高速运行的一些问题,它的散热系统更强劲;变频电机加强了槽绝缘,一是绝缘材料加强,二是加大槽绝缘的厚度,以提高承受高频电压的水平。同时变频电机增大了电磁负荷。

在电磁噪声和振动方面,变频电机在变频驱动时较普通电动机有更低的噪音和更小的电磁振动。相对于普通电机,变频电机价格不会贵很多,并且更节能,使用寿命更,所以优势很明显。

变频技术实际是利用电机控制学原理,通过所谓的变频器,对电机进行控制。用于此类控制的电机叫做变频电机。常见的变频电机包括:三相异步电机、直流无刷电机、交流无刷电机及开关磁阻电机等。

变频调速已经成为主流的调速方案,可广泛应用于各行各业无级变速传动。特别是随着变频器在工业控制领域内日益广泛的应用,变频电机的使用也日益广泛起来,可以这样说由于变频电机在变频控制方面较普通电机的优越性,凡是用到变频器的地方我们都不难看到变频电机的身影。