零指数幂的运算法则_零指数幂的运算公式
幂运算所有的运算法则。
同底数幂的乘法:底数不变,指数相加
零指数幂的运算法则_零指数幂的运算公式
零指数幂的运算法则_零指数幂的运算公式
零指数幂的运算法则_零指数幂的运算公式
同底数幂的除法:底数不变,指数相减
幂的乘方:底数不变,指数相乘
积的乘方:等于各因数分别乘方的积
商的乘方(分式乘方):分子分母分别乘方,指数不变
幂的运算解法技巧与思维提升
实数的零指数幂为什么都等于1呢。除0外。这是怎么来的呢?
不论是定义还是规定都必须是合理的,完全可以解释:
当我们只考虑正整数指数幂时,有一条运算法则:同底幂的商,底数不变,指数相减。即
a^m/a^n=a^(m-n),其中m,n都是正整数,且m>n.
但是,经常会遇到两个底数与指数分别相同的幂的除法运算,就是说在上面的那个式子中出现了m=n
的情况。于是考虑等号左边显然应当是1;右边如果仍然是“底数不变,指数相减”,就出现了零指数幂。这样就规定“任何非零数的0次幂都等于1”。
至于为什么规定中限制底数非零?那是因为等号左边是除法运算,分母不能为零,所以规定底数不等于零。
指数幂的运算法则是什么?
(1)任何不等于零的数的零次幂都等于1。
即(a≠0)。
(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
即(a≠0,p是正整数)。
(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)
1.同底数幂相乘,底数不变,指数相加。
即(m,n都是有理数)。
2.幂的乘方,底数不变,指数相乘。
即(m,n都是有理数)。
3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即=·(m,n都是有理数)。
4.分式乘方,分子分母各自乘方
即(b≠0)。
除法
1.同底数幂相除,底数不变,指数相减。
即(a≠0,m,n都是有理数)。
零指数幂底数的取值范围
底数不能为0,其余无限制。
一般地,在数学上我们把n个相同的因数a相乘的积记做a^n。这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a^n中,a叫做底数,n叫做指数。a^n读作“a的n次方”或“a的n次幂“。
零指数幂指的是零指数幂法则。零指数幂法则:任何一个不等于零的数的零次幂都等于1。
底数不能为0
底数不能为0
指数幂怎么算?
计算方法:一个数的负次方即为这个数的正次方的倒数。
a^-x=1/a^x
例如:
2的-1次方=1/2的一次方;
1/2的-1次方=2的一次方;
5的-2次方=1/5的二次方;
1/5的-2次方=5的二次方。
扩展资料
正整数指数幂、负整数指数幂、零指数幂统称为整数指数幂。正整数指数幂的运算法则对整数指数幂仍然是成立的。学习了零指数幂和负整数指数幂后,正整数指数幂的运算性质可以推知广到整数指数幕的范围。
指数幂的运算法则:
1、同底数幂相乘,底数不变,指数相加。
2、幂的乘方,底数不变,指数相乘。
对于乘除和乘方的混合运算,应道先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算。
证明零指数幂公式
0^n=0,n^0=1。
一般来说,在数学上把n个相同的因数a相乘的积记做a^n,这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a^n中,a叫做底数,n叫做指数,而an读作a的n次方或a的n次幂。一个数可以看做这个数本身的一次方,例如,5就是5^1,而指数1通常省略不写。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。