开关型稳压电源的设计 帮帮忙 啊

如图2所示的是测试电源输出纹波与噪声的方法。因其可将辐射噪声产生的影响降为。图2中所用示汉器带宽为0-20MHz。示波器探头的地线环直接接触电源的输出负端,探针与输出正端相接触。

多用途开关型稳压电源电路

开关电源电路设计 开关电源电路设计方案开关电源电路设计 开关电源电路设计方案


开关电源电路设计 开关电源电路设计方案


开关电源电路设计 开关电源电路设计方案


电气安全要求

电路工作原理:由图可知.V1是开关功率管,V2、V3是脉宽调制管,V4是采样放大管,V5是晶间管,用于过压保护。B1、B2是电压输出端,AC1、AC2是交流电源输人端。该电源有以下几种用途。

(1)有些早期购买的彩电,当电源部分出现故障后,往往不易检修,或者买不到代换的集成块。遇到这种情况,可考虑选用此电源替换原电源部分。BI输出110~120V可调。设彩电主电路所需电源电压为115V,就调RP,使B1为115V。有的机型的主电路还需一组12V电压,可从B2取出,如果需要12~25V的电源,可在行输出变压器上加绕组,经整流取得所需电压。

(2)作为维修电源。修彩电时,如果初步判断电源部分问题,可用本电源代替试一下,以证实问题出在电源部分还是主电路部分。

(3)农村有的地区晚间电源电压很低,当电压降到180V以下时,电视机就不能正常收看,很多用户各有交流稳压器通常,容公共端应是其他的接地点耦合到大电流的交流地的连接点,同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上。可采用一点接地,即将电源开关电流回路中的几个器件的地线都连到接地脚上,输出整流器电流回路的几个器件的地线接到相应的滤波电容的接地脚上,这样电源工作较稳定,不易自激。做不到单点时,在共地处接两个二极管或一小电阻,或接在比较集中的一块铜箔处就可以。。这种自耦变压器式的稳压器(或调压器)本身要耗电5~10W。如果用开关电源替换原有的变压器式电源,功耗可减少10W,也不再需要交流稳压器。交流电源电压降到100V时仍可正常收看。

(4)用于大型电视。厅所用的大型电视扫描板,采用的是类似的变压器降压式的稳压电源,当交流电源降到180V以下时就不能正常工作,换用开关电源后,就省去交流稳压器,交流电压降到130V也能正常工作,单位功耗也可减少20W。这类扫描板的主电路仅需一组110V电源。与B1连接后,调RP,使B1电压达到原值即可。

开关电源设计的注意事项有哪些

3、驱动电路设计,选个驱动电路,根据不一样的电力电子器件选个不一样的。

开关电源布局注意事项

步:确定开关电源模块在PCB板上的位置,开关是一个强烈的EMI辐射源,应远离时钟、接口等敏感器件摆放,然后尽量的靠近我们的用电端,同时考虑散热和装配性等因素。

第三步:确定原理框图中各个部分的核心器件:输入滤波、开关管、控制电路、全局布线的考虑输出滤波器件的摆放。

关于开关电源设计的注意事项,你还可以在这了解更多:

1、同样条件下,模块带不同天线发射电流是不一样的,但异不会太大。优先保证供电电源的带载能力从而保证满功率输出,设供电电源电压与模块工作电压一致,则瞬间电流需大于模块发射电流,通常地,需要预留一些余量。

3、若直流供电电正常情况下,交流输入的电源也可以用于直流输入。源电压过高,并且通过DC-DC电路转换到模块工作电压,在DC-DC电路输出端建议加TVS,抑制电源脉冲,客户需注意自己底板DC-DC电路的布局,布局会影响到带载能力等,可参照DC-DC芯片手册的布局。

对于我多年pcb设计经验来说:有1.输入输出回路最小 2.满足载流3.滤波4.地处理 5.反馈信号处理6.参考芯片资料设计 这6大方面。具体情况可以结合做项目时具体分析~

开关电源设计中的元器件如何选型?

电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决。即让某引线从别的电工作温度阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去。如果电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题。

【导读】开关电源属有稳压功能的DC/DC变换,其中间环节仍然要通过脉冲状态作为转换媒介。在开关电源中,电压、电流波形均为突变的脉冲状态,元器件所承受电压或电流除加在元器件上的供电电压以外,还有电路中电感成分引起的感应电压、电容器的充电电流等,使得元器件的选择变得复杂化。 实际上,开关电源属有稳压功能的AC/DC或DC/DC变换器,即使所谓DC/DC变换,其中间环节仍然要通过脉冲状态作为转换媒介。实际过程是:DC先逆变成脉冲状态的AC,再由脉冲整流、滤波成为直流电压。在此过程中,整流、滤波元器件要求也与工频整流电路大有区别。工频正弦波交流电源值、平均值和有效值都按正弦函数有固定的比例关系,可以对元器件的额定参数进行十分准确的计算。 但是,脉冲波、电压、电流数值的关系不是一成不变的,而是随脉冲波形和负载性质而有很大的变化。 即使采用积分法计算脉冲波形的平均值,要求脉冲波形有一定的规律,而波形幅度与时间关系的不稳定性使这种计算往往难以准确。尤其是脉冲波形的定量测高频纹波:频率与开关电源的内部脉冲调制(PWM)频率相同。量,也非一般简单仪表所能准确测量的,除了脉冲示波器以外,还没有更简单的方式,例如:开关电源开关管的反向电压值。至于某些情况下要求测出脉冲波的有效值就更困难了。例如:用行逆程脉冲向CRT灯丝供电,要求6.3V的有效值,其准确测量,除用热电偶传感器组成的磁电式仪表或高频率电动式仪表以外,似乎还没有其他的方式。 也就是说,工作在脉冲电路中的元器件欲通过实测电压、电流参数选择其性能是不可能的。至于理论计算,也只能达到近似估计的程度,具体参数选择是在计算结果的基础上宽打窄用。最明显的例子是:单端开关电路,从理论上计算,其开关管反压应为输入电压值的两倍。而实际应用中,加在开关管集电极的脉冲波形受储能电感的集总参数、分布参数和电源负载性质的影响,开关管承受反压值将超出理论计算值范围。 因为电感线圈的感应电势不仅与电流变化成正比的函数,而且与产生电流变化的时间成反比。另外,电感线圈的工艺上几乎难以人为控制的分布参数,也使感应电势大幅度超出计算值。因此,在脉冲状态下,不论无源元件还是有源器件,其性能选择不同于普通模拟电路。

我想学开关电源从哪里学起,我只会一点电子知识,请指点一下

● 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的传输方向。

学习开关电源需要一定电子基础知识,以下是建议学习路线:1. 学习基础电学知识,如欧姆定律、基础电路分析、电源和信号的特性等。2. 学习开关电源的基础知识,了解其原理、分类、应用等。3. 学习开关电源的电路组成和工作原理,掌握基本电路设计方法。4. 学习电源控制芯片和电感设计、磁性元器件、滤波电路等核心技术。5. 学习实际应用中可能遇到的问题,如EMI/EMC设计、稳定性分析与控制、高效率设计等。建议参考一些经典的开关电源教材,如《开关电源设计与分析》、《开关电源的设计》等。同时建议学习一些在线教育平台的开关电源课程,如Coursera、edX、Udemy等。也可以通过参加一些电子设计的培训课程来提升实践经验。

2、提设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求。一般检查线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方。高用电安全

如果你很少的电子、电气知识的话,有一定的难度,不过你可以到新华书店,直接找到关于开关电源方面书,里面有详细的介绍。碰到问题在查相关资料,这样既不花钱,又直接的学到了相关知识。

要从震荡电路学起。楼上的建议很好,可以采纳。

求开关稳压电源设计制作中PCB设计规范?

如何测试电源输出纹波与噪声

源设计与制作中,PCB的设计与制作都是至关重要的。在任何开关电源设计中,PCB板的物理设计都是一个环节,如果设计方法不当,PCB可能会造成很多的问题。笔者根据多年的PCB设计经验,尤其总结了电源设计制作的经验,以下针对各个步骤中所需注意的事项进行分析。

电气安全要求

设● 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的传输方向。计流程

理图到PCB的设计流程为:建立元件参数→输入原理网表→设计参数设置→手工布局→手工布线→验证设计→复查→CAM输出。

导线的间距必须能满足电气安全要求,最小间距至少要能适合承受的电压,而且为了便于作和生产,间距要尽量地宽。在布线密度较低时,信号线的间距可适当地加大。对高、低电平悬殊的信号线则要尽可能地加大间距,一般为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时的焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而且走线与焊盘不易断开。

个开关电源都有四个电流回路:电源开关交流回路,输出整流交流回路,输入信号源电流回路,输出负载电流回路。输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入及输出电流回路应只从滤波电容的接线端连接到电源;如果输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将经由输入或输出滤波电容而辐射到环境中去。电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。这两个回路最容易产生电磁干扰,因此必须在电源中其他印制线布线之前先布好这些交流回路。每个回路的滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,使它们之间的电流路径尽可能短。

对电路的全部元器件进行布局时,要符合以下原则:

● PCB尺寸过大时,印制线条长,阻抗增加,抗噪能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰。电路板的形状为矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm。

● 放置器件时要考虑以后的焊接,不要太密集。

● 在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。

● 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。

● 尽可能地减小环路面积,以抑制开关电源的辐射干扰。

线的长度和宽度会影响其阻抗和感抗,进而影响频率响应。即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和其他电源线的元器件放置得很近。根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,是控制干扰的重要因素。因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定。在地线设计中应注意以下几点。

1 正确选择单点接地

2 尽量加粗接地线

接面看,元件的排列方位尽可能保持与原理图相一致,布线方向与电路图走线方向相一致。

布线图时,走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90°,力求线条简单明了。

检查与复查

开关电源设计 文献综述怎么写?

2、保证电源稳定性,电源纹波越小越好,通常地,百毫伏级的。

开关电源--技术参数说明与安全注意事项

部分参数说明

输入电压

当交流输入电压范围为85-264VAC,直流输入电压范围为120-370VDC;当交流输入电压范围为210-370VDC,或根据开关选择输入范围为85-132VAC/170-264VAC。

输入冲击

指的是电源冷启动时的瞬间输入电流。

多路输出

在多路输出电源中所列出的电流是每路输出的电流,每路输出的总值均不超过系列电源额定功率范围。正常情况下,多路输出电源的V1输出是于其他几路输出。对于共地产品,只需将V1的+/-极相应端子与其他几路的其他端子相连即可。

对于多路输出的负载调整率的测试,是将被测试的那一路输出 负载在额定值的20%-变化,其它各路输出负载都保持在额定值的60%进行。

输出功率

输出纹波与噪声

如图1所示,开关电源的纹波和噪声一般情况下指总的纹波电压形成的正反峰之间的电压值,由四部分组成。

低频纹波:频率为输入AC电源频率的2倍(直流输入时无此项)。

开关噪声:与开关脉冲的频率相同中。

随机噪声:与交流输入电压及开关频率无关。

图 1

图 2

AC输入电源的定义

三相供电零线配置

对于功率因数为0.4-0.6的开关电源,当多台电源在三相四线制系统中以平衡的方式配置时,由于输入电流波形畸变,使零线上的电流不能相抵。因此在一般情况下,建议将零线的规格设置为相线的1.5-2倍。以实测电流方式进行配置。

泄指电源在正常工作时的环境温度,如电源安装在设备的机箱内,工作温度就指机箱内部温度,而非室内或室外温度。因此如果电源的工作温度超过额定标准,建议用户按电源功率定额值的2%/℃减额使用或采取风冷措施以使工作温度低于额定的工作温度。漏电流

多台电源在使用时,共同接入同一接地点,总的泄漏电2、元器布局流是由每个单元的泄漏电流相加构成。届时要检查保护接地线的可靠性及接地电阻是否能达到要求,以免遭电击。

泄漏电流

多台电源在使用时,共同接入同一接地点,总的泄漏电流是由每个单元的泄漏电流相加构成。届时要检查保护接地线的可靠性及接地电阻是否能达到要求,以免遭电击。

充电使用

本公司100W以上单路电源均可直接用于恒压限流方式(浮充方式)充电。

在设计开关电源之前,应当仔细研究要设计的电源技术要求.现以一个通信电源模块的例子来说 明设计要考虑的问题.该模块的...开关电源供给各种不同的负载,各种负载都有自己的特性,负载对开关电源提出符合自己特性的要求.详细原文地址:

描写一下开关电源的优点,以及使用的时候注意事项。

多路输出电源开关的设计

地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏,因此要确保每一个大电流的接地端采用尽量短而宽的印制线,尽量加宽电源件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会造成信号波形的延迟,在传输线的终端形成反射噪声。因此,在设计印制电路板的时候,应注意采用正确的方法。、地线宽度,是地线比电源线宽,它们的关系是:地线>电源线>信号线,如有可能,接地线的宽度应大于3mm,也可用大面积铜层作地线用,在印制板上把没被用上的地方都3、参数与地相连接作为地线用。

求开关稳压电源设计制作中PCB设计规范?

在开关电源设计里面,我们一定要谨记自己的每一个参数,这样才能在以后给使用具体说明。详细的参数也可以方便后期对开关电源的测试,这样也会节省一部分的时间。

源设计与制作中,PCB的设计与制作都是至关重要的。在任何开关电源设计4、保护电路,这个我不在行。中,PCB板的物理设计都是一个环节,如果设计方法不当,PCB可能会造成很多的问题。笔者根据多年的PCB设计经验,尤其总结了电源设计制作的经验,以下针对各个步骤中所需注意的事项进行分析。

设计流程

理图到PCB的设计流程为:建立元件参数→输入原理网表→设计参数设置→手工布局→手工布线→验证设计→复查→CAM输出。

导线如果将输出电压调高,那么输出电流将相应减少以保持总功率不变。如果将输出电压调低时,输出电流应不超过标准额定值。的间距必须能满足电气安全要求,最小间距至少要能适合承受的电压,而且为了便于作和生产,间距要尽量地宽。在布线密度较低时,信号线的间距可适当地加大。对高、低电平悬殊的信号线则要尽可能地加大间距,一般为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时的焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而且走线与焊盘不易断开。

个开关电源都有四个电流回路:电源开关交流回路,输出整流交流回路,输入信号源电流回路,输出负载电流回路。输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入及输出电流回路应只从滤波电容的接线端连接到电源;如果输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将经由输入或输出滤波电容而辐射到环境中去。电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。这两个回路最容易产生电磁干扰,因此必须在电源中其他印制线布线之前先布好这些交流回路。每个回路的滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,使它们之间的电流路径尽可能短。

对电路的全部元器件进行布局时,要符合以下原则:

● PCB尺寸过大时,印制线条长,阻抗增加,抗噪能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰。电路板的形状为矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm。

● 放置器件时要考虑以后的焊接,不要太密集。

● 在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。

● 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。

● 尽可能地减小环路面积,以抑制开关电源的辐射干扰。

线的长度和宽度会影响其阻抗和感抗,进而影响频率响应。即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和其他电源线的元器件放置得很近。根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,是控制干扰的重要因素。因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定。在地线设计中应注意以下几点。

1 正确选择单点接地

2 尽量加粗接地线

接面看,元件的排列方位尽可能保持与原理图相一致,布线方向与电路图走线方向相一致。

布线图时,走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90°,力求线条简单明了。

检查与复查

什么是开关电源_开关电源的特性及设计注意事项有哪些

1引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源值,无论系统的各路负载特性如何变化,而各路电源电压依然无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。 从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1、Vaux2而言,其精度主要依赖以下几个方面: 1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3 2)辅助电路的负载情况。 3)主电路的负载情况。 注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。 在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度的因素为主电路和辅电路的负载情况。在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。 2.1电源变换器多路输出交叉负载调整率测量与计算步骤 1)测试仪表及设备连接如图2所示。 2)调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压。 3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj。 4)按式(1)计算第j路的交叉负载调整率SIL。 式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj之的; Uj为各路输出电流为额定值时,第j路的输出电压。 根据上面的测试及计算方法可以将交叉负载调整率理解为:所有其它输出电路负载跨步变(100%-0%时)对该路输出电压精度影响的百分比。 2.2多路输出开关电源 由图1原理所构成的实际开关电源,主控电路仅反馈主输出电压,其它辅助电路完全放开。此时设主、辅电路的功率比为1:1。从实际测量得主电路交叉负载调整率优于0.2%,而辅电路的交叉负载调整率大于50%。无论开关电源设计者还是应用者对大于50%的交叉负载调整率都将是不能接受的。如何降低辅电路交叉负载调整率,最直接的想法就是给辅助电路加一个线性稳压调节器(包括三端稳压器,低压三端稳压器)如图3所示。 从图3可知,由于引入了线性稳压调节器V,所以在辅路上附加了一部分功率损耗,功率损耗为P=而要使辅电路的交叉负载调整率小,就必须有意识地增大线性调整器的电压,即就是要有意识增大,其带来的缺点就是增加了电源的功率损耗,降低了电源的效率。 以图1及图3原理为基础设计和应用电源时,应注意的原则为: 1)主电路实际使用的电流最小应为满输出电流的30%; 2)主电路电压精度应优于0.5%; 3)辅电路功率小于主电路功率的50%; 4)辅电路交叉负载调整率不大于10%。 2.3改进型多路输出开关电源 在很多应用场合中,要求2路输出的功率基本相当,比如±12V/0.5A,±15V/1A。我们通过多年的实践,设计了如图4所示的电路,能较好地达到提高交叉负载调整率的目的。 图4电路设计思想的核心有以下2点。 1)将正负2路输出滤波电感L1、L2绕制在同一磁芯上,采用双线并绕的方法,从而保证L1、L2电感量完全相同。并注意实际接入线路时的相位(模方法)关系,这种滤波电感的连接方法使2路输出电流的变化量相互感应,在一定程度上较大地改善了2路输出的交叉负载调整率。 2)从图4可以看到,采样比较器Rs1、Rs2不像图1那样接到主电路Vp上,而是直接跨接到正负电源的输出端上,并且逻辑“地”不是电源的输出地,而是以负电压输出端作为采样比较和基准电压的逻辑“地”电位。这样采样误将同时反映出正、负2路输出的电压精度变化,对正、负2路同样都存在有反馈作用,能在很大程度上改进2路输出的交叉负载调整率。以±15V/1A电源为例,采用图4的电路设计,实测得的2路交叉负载调整率优于2%。 以图4原理为基础设计和应用电源时,应注意的原则为: 1)2路为对称输出(功率对称,电压对称),无明显的主、辅电路之分,比如我们常用到的±12V,±15V等都属于此类; 2)2路输出电压精度要求都不是太高,1%左右; 3)2路输出交叉调整率要求相对较高,2%左右。 下面介绍一种通用性极强的3路电源设计方案,如图5所示。 从图5可以看到,主+5V输出与辅路±Vout(可以是±15V或±12V)输出电路不但反馈相互,而且其PWM(脉宽调制器),功率变换和变压器都是相互的。可以将此3路电源看成是由相互的1个+5V电源和1个±Vout电源共同组合而成。为了进一步减少二者之间的相互干扰和降低各自输出电压纹波的峰-峰值,应当进一步减小各电源的输入反射纹波(一般纹波峰-峰值应小于50mV,纹波有效值应小于10mV)和采用同步工作方式。 2.4高频磁放大器稳压器 在多路输出电源中,输出电路经常采用高频磁放大稳压器,它以低成本、高效率、高稳压精度和高可靠性,而在多路输出的稳压电源中得到了广泛应用。 磁放大器能使开关电源得到的控制,从而提高了其稳定性。磁放大器磁芯可以用坡莫合金,铁氧体或非晶,纳米晶(又称超微晶)材料制作。非晶、纳米晶软磁材料因具有高磁导率,高矩形比和理想的高温稳定性,将其应用于磁放大器中,能提供无与伦比的输出调节性,并能取得更高的工作效率,因而倍受青睐。非晶、纳米晶磁芯除上述特点外还具备以下优点: 1)饱和磁导率低; 2)矫顽力低; 3)复原电流小; 4)磁芯损耗少; 磁放大输出稳压器没有采用晶闸管或半导体功率开关管等调压器件,而是在整流管输出端串联了一个可饱和扼流圈(如图6所示),所以它的损耗小。 由图6可知,磁放大稳压器的关键是可控饱和电感Lsr和复位电路。可控饱和电感是由具有矩形B?H回线的磁芯及其上的绕组组成,该绕组兼起工作绕组和控制绕组的作用。复位(RESET)是指磁通到达饱和后的去磁过程,使磁通或磁密回到起始的工作点,称为磁通复位。由于磁放大稳压器所用的磁芯材料的特点(良好的矩形B?H回线及高的磁导率),使得磁芯未饱和时的可控饱和电感对输入脉冲呈现高阻抗,相当于开路,磁芯饱和时可控饱和电感的阻抗接近于0,相当于短路。 目前开关电源工作频率已提到几百kHz以上,磁放大器在开关电源中的广泛应用对软磁材料提出了更高的要求。在如此高的频率下,坡莫合金由于电阻率太低(约60μΩ?cm)导致涡流损耗太大,造成温升高,效率降低,采用超薄带和极薄带虽能有所改善,但成本将大幅度上升;铁氧体具有很高的电阻率(大于105μΩ?cm),但其Bs过低,居里点也太低。由于工作环境恶劣,对材料的应力敏感性、热稳定性等都有严格要求,上述材料是很难满足要求的。 非晶合金的出现大大丰富了软磁材料。其中的钴基非晶合金具有中等的饱和磁感应强度,超微合金具有较高的饱和磁感应强度,它们都具有极低的饱和磁致伸缩系数和磁晶各向异性。钴基非晶和超微晶在保持高方形比的同时可以具有很低的高频损耗,用于高频磁放大器中,可大大提高电源效率,大幅度减小重量、体积,是理想的高频磁放大器铁芯材料。 3高频磁放大输出稳压器典型应用电路 图7所示的多路输出电源,其主路为闭环反馈PWM控制方式,辅路为磁放大式稳压电源。由于辅路磁放大输入电压波形受控于变压器主、辅绕组比,以及主路的工作状态(主路输出电压的高低和主路负载的高低等),所以辅路的交叉负载调整率仍然不能够达到理想的状态。 图8所示是一种完全利用磁放大器稳压技术设计的多路输出稳压电源。此电源前级为双变压器自激功率变换电路,后级多路输出均为磁放大器稳压电路。并且各路之间无关,前后级之间无反馈,无脉宽调制器(PWM)。 此电路的优点如下: 1)电路结构简单,使用元器件数量少,除了两只功率管以外,其它元器件均是性或半性的,可靠性极高,制作也很方便; 2)电路中没有隔离反馈放大器,因此调整极其容易,而且一旦调整好后就无须维护,前级变换功率取决于后级总输出功率; 3)各路的输出特性相互,独自调整稳压,无主、辅路之分,所以,各输出电路的负载调整率的交叉负载调整率都非常理想,小于0?5%; 4)磁放大器在功率开通瞬间,处于“开路”状态,功率管在此刻的导通电流趋近于零,因而,损耗减到了限度,这有利于变换器的高频化和高效率; 5)由于前级功率变换器为不调宽的纯正方波,以及后级接了磁放大器,这样可以大幅度地降低输出纹波的峰-峰值,普通PWM型电源的输出纹波大约为输出电压标称值的1%左右,而采取带磁放大器的整流电路,纹波的峰-峰值可比较容易地降低到0.1%左右。 上述磁放大型稳压电源的综合电特性都是其它PWM隔离负反馈多路电源所无法比似的。尤其对多路电源实际应用来讲,可以对电源内部特性和电子系统的负载特性不予考虑,拿来就能使用,用上就无问题。但是,现代磁放大型稳压电源还存在如下一些问题,有待解决。 1)电路形式需进一步完善(尤其是电源前级功率变换电路),应加入过、欠压保护,过流、短路保护,电源使能端。 2)进一步提高工作频率,以便减小体积。 3)进一步提高效率,减小磁损。 4结语 综合上述,对多路电源应用者而言,可以根据电子系统用电情况,更切实际地提出所用电源的特性参数。对多路电源设计者而言,可以更多更系统地了解现今多路电源设计方法,减少新产品的开发周期,做到事半功倍。

【什么是开关电源】

所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控矽,有的采用开关管,这两个元器件性能不多,都是靠基极、(开关管)控制极(可控矽)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控矽就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。

【开关电源的特性】

1、多变的电路

什么是开关电源?通俗一点就是影响整个电路设置的按钮。实际大家设置开关电源的位置不同,同时也会导致电路的不同。有时候开关电源越多,电路的走向越复杂,因此大家安装开关电源的时候必须慎重,如果有不必要的电路我们需要提前排除。

自从有了开关电源,我们的用电多了一份安全的保障。专家指出,

其实现在优质的开关电源产品还可以提高抗雷击性,同时对劣质环境的适应能力也会提高,这些都会从根本上避免用电的发生。开关电源可以在无形中给我们的电路形成一种保护系统,一旦发生短路或者变压的情况下,时间切断电源,把意外带来的伤害降到。

3、耐用性

很多时候我们选择开关电源的时候,都希望它能耐用,这样才里更好的保护我们身边的用电安全。现在优质的开关电源在抗老化性能得到提升,而且也可以抵抗高温环境,这样可以避免用电的发生。其实大家使用开关电源的时候,有时● 以每个功能电路的核心元件为中心来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接, 去耦电容则尽量靠近器件的VCC。候会碰见忽冷忽热的情况,这个时候我们希望有一个可以承受冷热冲击的电源,现在这样的开关电源诞生了。

4、噪音低

现在我们的开关电源噪音是非常低,即使安放在室内,也不会影响我们的正常,这也是大家为什么越来越钟爱现在开关电源的缘故。

【开关电源设计的注意事项】

1、布线

开关电源设计对于布线要求是非常严格的,如果设计师在前期没有做好布线的工作,

那么可能会给以后的用电带来隐患,因此大家购买开关电源的时候也要注意排线的实际情况,避免发生无法挽回的伤害。

元器对于开关电源设计是非常重要的,设计一定要遵从物理原理,不要擅自更改元器的位置,避免电路发生意外。另外,设计师购买的元器也要经过严格的品质检查。

4、检查

每个开关电源设计都需要经过严格检查才可以生产,因为只有通过检查我们才能高频处理知道开关电源的适用性,

从而开关电源的价值。检查开关电源设计的时候,我们可以从电路开始,测试开关电源的实际工作环境,什么样的环境下最适合,什么环境下容易发生电路意外,这些都需要我们进行一一检查。

从上可以看出开关电源的重要性,并且我们的生产生活都离不开开关电源的运用,感兴趣的朋友可以多了解有关于开关电源的知识,希望可以帮助到大家。

感兴趣的朋友可以多了解有关于开关电源的知识,希望可以帮助到大家。