液相色谱柱的分类与选择 液相色谱柱的分类与选择依据
常见的液相色谱柱检测器有哪几种
光学类检测器六、所用检测器有异:
液相色谱柱的分类与选择 液相色谱柱的分类与选择依据
液相色谱柱的分类与选择 液相色谱柱的分类与选择依据
1、紫外吸收检测器(UVD)是目前HPLC中应用广泛的检测器。它的主要特点是灵敏度高,线性范围宽,对流速和温度变化不敏感,可用于梯度洗脱。它要求被检测样品组分有紫外吸收,属于选择性检测器。
2、二极管阵列检测器(PDAD)是20世纪80年代才出现的一种光学多通道检测器,它可以看作是UVD的一个分支。在对每个洗脱组分进行光谱扫描,经计算机处理后,得到光谱和色谱结合的三维图谱。其中吸收光谱用于定性(确证是否是单一纯物质),色谱用于定量,常用于复杂样品(如生物样品、中草)的定性定量分析。
3、荧光检测器(FLD)同样属于选择性检测器,其灵敏度在目前常用的HPLC检测器中是的,应用也较多,仅次于UVD。它适用于能激发荧光的化合物。很多与生命科学有关的物质,如氨基酸、胺类、维生素、甾族化合物及某些代谢物都可以用荧光法检测。荧光检测器在生物样品痕量分析中很有用,尤其在用荧光衍生后,可以检测很微量的氨基酸和肽。
通用型检测器
1、示折光检测器(RID)是一种通用型检测器,只要被测组分与洗脱液的折光指数有别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示折光检测器。它的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。
2、蒸发光散射检测器(E)也是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。E的响应值与样品的质量成正比,因而能用于测定样品的纯度或者检测未知物。E灵敏度比RID高,对温度变化不敏感,基线稳定,可用于梯度洗脱。现在E已被广泛应用于碳水化合物、类脂、脂肪酸和氨基酸、物以及聚合物等的检测。
3、质谱检测器(MSD)是另一种通用型检测器,在灵敏度、选择性、通用性及化合物的分子量和结构信息的提供等方面都有突出的优点。但它的昂贵作费用和①离子交换色谱法的作用机制复杂性限制了它的推广应用。
希望对你有所帮助。
高效液相色谱法的主要类型有哪些
②正相色谱和反相色谱高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。
液相色谱柱还有专用色谱柱:如麻黄专用色谱柱,蜂蜜专用色谱柱,利巴韦林专用色谱柱,甘露醇专用色谱柱,乳糖专用色谱柱,肝素钠专用色谱柱,氨基酸专用色谱柱,益母草专用色谱柱,硫酸软骨素纳专用色谱柱。头孢聚合物专用色谱柱。抗体剖析专用色谱柱。1、液-固色谱法(液-固吸附色谱法)
固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。
①液-固色谱法的作用机制
吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。
X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。
吸附反应的平衡常数K为:
发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。
②液-固色谱法的吸附剂和流动相
常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。
一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。
对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小
流动相不能影响试样的检测
③液-固色谱法的应用
常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。
2、液-液色谱法(液-液分配色谱法)
将液体固定液涂渍在担体上作为固定相。
①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。
液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。
正相分配色谱用极性物质作固定相,非极性溶剂(如苯、等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。
一般地,正相色谱是固定液的极性大于流动相的极性,而反相色谱是固定相的极性小于流动相的极性。正相色谱适宜于分离极性化合物,反相色谱则适宜于分离非极性或弱极性化合物。
③液-液色谱法的固定相 常用的固定液为有机液体,如极性的β,β′氧二(ODPN),非极性的十八烷(ODS)和异二十烷(SQ)等。
缺点:涂渍固定液容易被流动相冲掉。 采用化学键合固定相则可以避免上述缺点。
使固定浓与担体之间形成化学键,例如在硅胶表面利用硅烷化反应:形成Si-O-Si-C型键,把固定液的分子结合到担体表面上。
优点:
化学键合固定相无液坑,液层薄,传质速度快,无固定液的流失。 固定液上可以结合不同的官能团,改善分离效能。 固定液不会溶于流动相,有利于进行梯度洗提。
④液-液色谱法的应用
液-液色谱法既能分离极性化合物,又能分离非极性化合物,如烷烃、烯烃、芳烃、稠环、染料、留族等化合物。化合物中取代基的数目或性质不同,或化合物的相对分子质量不同,均可以用液-液色谱进行分离。
3、离子交换色谱法
原理:离子交换色谱法是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的被测离子进行可逆交换,由于被测离子在交换剂上具有不同的亲和力(作用力)而被分离。
聚合物的分子骨架上连接着活性基团,如:-SO3-,-N(CH3)3+等。为了保持离子交换树脂的电中性,活性基团上带有电荷数相同但正、负号相反的离子X,称为反离子。
②溶剂和固定相
两种类型:多孔性树脂与薄壳型树脂。
薄壳型离子交换树脂:在玻璃微球上涂以薄层的离子交换树脂,这种树脂柱效高,当流动相成分发生变化时,不会膨胀或压缩;缺点是但柱子容量小,进样量不宜太多。
③离子交换色谱法的应用
主要用来分离离子或可离解的化合物,凡是在流动相中能够电离的物质都可以用离子交换色谱法进行分离。
广泛地应用于:无机离子、有机化合物和生物物质(如氨基酸、、蛋白质等)的分离。 4.凝肤色谱法(空间排阻色谱法)
①凝胶色谱法的作用机制
体积大于凝胶孔隙的分子,由于不能进入孔隙而被排阻,直接从表面流过,先流出色谱柱;小分子可以渗入大大小小的凝胶孔隙中而完全不受排阻,然后又从孔隙中出来随载液流动,后流出色谱柱;中等体积的分子可以渗入较大的孔隙中,但受到较小孔隙的排阻,介乎上述两种情况之间。
凝胶色谱法是一种按分子尺寸大小的顺序进行分离的一种色谱分析方法。
②凝胶色谱法的固定相
软质凝胶、半硬质凝胶和硬质凝胶三种。
③凝胶色谱法的应用特点
保留时间是分子尺寸的函数,适宜于分离相对分子质量大的化合物,相对分子质量在400~8×105的任何类型的化合物。
固定相与溶质分子间的作用力极弱,趁于零,柱的寿命长。
不能分辨分子大小相近的化合物,分子量相需在10%以上时才能得到分离。
常用的色谱仪器有哪两大类,各自有何特点
凝胶是一种多孔性的高分子聚合体,表面布满孔隙,能被流动相浸润,吸附性很小。凝胶色谱法的分离机制是根据分子的体积大小和形状不同而达到分离目的。色谱分析常用的定量方法:归一化法、内标法和内加(增量)内标法、外标法。
1、面积归一化法优点是简便、准确,当作条件变化时对结果影响较小,宜于分析多组分试样中各组分的含量。但是试样中所有组分必须全部出峰,因此,此法在使用中受到一定限制。
2、外标法是用纯物质配成一系列不同浓度的标准溶液(或直接购买不同浓度标准溶液)分别取一定体积,注入色谱仪,根据峰面积和浓度做标准曲线。在分析未知样时按与标准曲线相同的作条件和方法,由标准曲线查出所需组分的浓度(现在在工作站上直接就能求出浓度)。此法要求进样准确,作条液相色谱柱也已经商品化。由于其特殊的性质,一般仅限于特殊的用途。如,石墨化碳正逐渐成为反相色谱柱填料。这种填料的分离不同于硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性。该柱填料一般比烷基键合硅胶或多孔聚合物填料的保留能力更强。石墨化碳可用于分离某些几何异构体,又由于在HPLC流动相中不会被溶解, 这类柱可在任何pH与温度下使用。件稳定,分析样品和标准曲线条件必须一致。
色谱柱的作用是什么
流动相你自己摸索,先尝试中性,乙腈水流动相分气相色谱主要为:氢火焰离子化检测器(FID)、热导检测器(TCD)、电子捕获检测器(ECD)、火焰光度检测器(FPD)、氮磷检测器(NPD)。离化合物。
色谱柱是一种用于分离化合物的重要工具。它由填充在管子中的吸附剂或分子筛组成,当样品通过这些填料时,化合物会因其在填料中的亲和力不同而按照一定顺序被逐步分离出来。根据不同的原理和填充材料,色谱柱可以分为多种类型,如气相色谱柱、液相色谱柱、离子交换色谱柱等。它们广泛应用于生命科学、物研发、环境监测等领域中的分析和纯化过程中。
色谱柱的选择应该根据实验需求和目标化合物的性质来确定,包括分子量、极性、酸碱性等因素。此外,在使用色谱柱进行实验时,还需要注意保持柱温、流速等作参数的稳定,以获得准确可靠的结果。
液相色谱C18柱标示4.6mm5m分别代表什么意思?平时使用有什么注意事项?
聚基b -----------在1<PH<13的流动相中稳定;对某些分 离峰形好,柱子寿命长mm代表色谱柱长度,4.6代表色谱柱内径,5m代表色谱柱填料颗粒直径
色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝等组成。
一要看清说明书后再使用 ,色谱柱内部保存着什么溶剂一定要看清楚,也包括说明书上建议的维护保养规定, 二要用纯水冲洗色谱柱才能把缓冲液冲洗干净 使用强溶剂冲洗色谱柱对内部填料的损伤是的,三要色谱柱应该保存在纯乙腈或甲醇中。
理论上液相色谱柱不同于气相色谱柱需要液相色谱柱是柱中流动相线性流速的函数,使用不同的流速可得到不同的柱效。对于一根特定的色谱柱,要追求柱效,使用流速。对内径为4.6mm的色谱柱,流速一般选择1ml/min,对于内径为4.0mm柱,流速0.8ml/min为佳。活化,但是由于液相色谱柱内部保存的有机系具有挥发性,因此在使用前还是应该用小流速的和色谱柱内部相同的溶剂冲洗一定的时间。
TC色谱柱,HC色谱柱,RP色谱柱,C8色谱柱的不同
1、液相反相液相柱90%用的是C18填料,还有C8。大多数中低极性有机物都可用C18柱子检测。
3、内标法是试样中所有组分不能全部出峰或只要求测定试样中某个或某几个组分时,可采用此法。内标法是在准确称取一定量的试样中,加入一定的标准物质(内标物),根据内标物和试样的质量以及色谱图上的相应峰面积,计算待测组分的含量。内标法的关键是选择合适的内标物,内标物应是试样中不存在的纯物质,物质与被测物质相近,能溶于样品中,但不能于样品发生反应。此法比较费事,一般不使用于快速分析。不同厂家柱子测定同一成分时保留时间、柱效都会有所异,总体来说,国外的如waters、菲罗门、迪马、安捷伦等柱子要比国内的柱效高,耐用。
建立分析方法时,要对色谱柱进行筛选,一般就是选择3到4根不同厂家的同一类色谱对同一成分同一色谱条件进行检测,将柱效、分离度、拖尾因子、不对称度等作为评价指标。
怎么根据检测物质选择液相色谱柱?我要检测双酚A,应该选择什么填料的色谱柱呢?为什么?
1、首先,双酚A不能用气相检测
原因:双酚A加热到180℃时分解。
2、你可以用液相检测,双酚A有共轭双键,具有很强的紫外吸收。
色谱柱你“气化温度的选择可以选择普通C18
不行的话生产厂家换酸性条件,0.1%磷酸,0.01%TFA都可以。
3、定量方法选择外标。
希望能帮到你
如何选择色谱柱和色谱分析条件
K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。1、样品的前处理:柱温是影响分析时间和分离度的重要因素。选择柱温的依据是样品的沸点范围,固定液的配比,允许使用温度,以及检测器的灵敏度。柱温主要影响分配系数、容量因子以及组分在流动相和固定相中的扩散系数,从而影响分离度和分析时间。选择温柱的原则,一般是在使难分离物质对达到要求的分离度条件下,尽可能采用低温柱,其优点是可以增加固定相的选择性,降低组分在流动相中的纵向扩散,提高柱效,减少固定液的流失、延长柱寿命和降低检测器的本底。提高柱温可以使保留时间减少,加快分析速度,使样品中组分完全流出,但是分离效果不好。降低柱温,样品有较大的分配系数,选择性高,有利于分离。但温度过低,容易引起峰形拖尾或前伸,并且分析时间长。可根据固定液的使用温度极限和样品组分沸点调节柱温。对于高沸点混合物,在保证分离完全的前提下,尽量降低柱温。可在低于分析物沸点180℃~200℃的柱温下进行分析;对沸点不太高(200~300℃)的样品,柱温可选100℃以下;对于气体、气态烃等低沸点混合物,一般选择室温或50℃以下进行分析。对于宽沸程样品,需采用程序升温法进行分离,即柱温按预先设定的程序随时间成线性或非线性增加,从而获得的分离效果。
“载气的选择
一般说来,痕量分析或毛细管色谱的载气纯化程度,要高于常规分析。特别是电子捕获、热导池检测器,载气纯度直接影响灵敏度和稳定性,一定要严格净化。根据分析对象,对于色谱柱的类型,作仪器的档次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能:a.样品失真或消失:如H 2 O气使氯硅样品水解;b.色谱柱失效:H 2 O,CO 2使分子筛柱失去活性,H 2 O气使聚脂类固定液分解,O 2使PEG固定液断链;c.有时某些气体杂质和固定液相互作用而产生峰;d.对柱保留特性的影响:如H 2 O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大;e.检测器:TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命;FID:特别是在Dt≤1×10-11/S下作时,CH 4等有机杂质会使基流激增,噪声加大不能进行微量分析;f.在做程序升温作时,载气中的某些杂质,在低温时保留在色谱柱中,当柱温升高时不但引起基线漂移,还可能在谱图上出现比较宽的“峰”;g.仪器影响:各类过滤器加速失效;调节阀(稳压阀,稳流阀,针形阀) 被污染,气阻堵塞,调节精度降低或失灵;气路系统被污染,若要恢复仪器在高灵敏度情况下作,有时要吹洗很长时间(可能一周以上), 污染时有时再也无法恢复;对于FID,水蒸气会影响分析结果,直至影响检测器的寿命;对ECD和TCD的寿命明显,这点应引起用户特别注意。
“载气的压力和流速
载气压力对柱效率有直接的影响。如提高柱内压力,有助于提高柱效率。但只提高入口压力,使流速加大且压降太大时,反而会降低柱效率,因此也必须提高出口压力。一般采用在柱后加装适当气阻的方法来解决这一问题。载气流速主要影响分离效率和分析时间。为获得高柱效,应选用流速,但所需分析时间较长。为缩短分析时间,一般选择载气速度要高于流速,此时柱效虽稍有下降,却节省了很多分析的时间。常用的载气速度流速为20~80mL/min。对于FID 或FPD 检测器,氢气和空气的比例是影响分离度和灵敏度的重要因素,只有反复试验,才能确定适合的比例。对于填充柱色谱柱,载气流入方向要尽量与色谱柱内固定相装填方向一致,以减小压,提高效率。
“进样量的选择
进样量的多少直接影响谱带的初始宽度。因此,只要检测器的灵敏度足够高,进样量越少,越有利于得到良好的分离。一般情况下,柱越长,管径越粗,组分的容量因子越大,则允许的进样量越多。一般气体进样量在1~10mL,液体进样量在0.5~10μL 之间,可取得较好的分析效果。此外,进样速度要快,进样时间要短,以减少纵向扩散,有利于提高柱效。
气化温度取决于样品的挥发性、沸点范围及进样量等因素。气化温度选择不当,会使柱效下降。通常气化室的温度选择为样品沸点或高于沸点,以保证样品能瞬间气化;但不要超过沸点50℃以上,以防止样品分解。对于一般的气相色谱分析,气化温度比柱温高10~50℃即可。但对于某些高沸点组分或热稳定性的组分,在其沸点左右分析会产生分解现象。此时应采取的措施是减少进样量,采用高灵敏度检测器,气化室温度的选择应低于其沸点100~200℃。从以上介绍的选择原则可以看出,各种条件往往同时影响色谱柱的选择性和效率,它们之间既密切联系又互相制约。因此在实际分析中,要作综合考虑,灵活地运用这些原则,既要保证良好的选择性,又要保证分离效率,合理地选择色谱分析条件。
液相色谱C18色谱柱特点及相关参数
保留时间短,色谱峰窄,容易检测。C18色谱柱的参数较多。
色谱柱规格:长度、内径、粒度
品牌常用的流动相:甲醇、、苯、乙腈、、吡啶等。
等等都是。
“生化色谱网”上对所有色谱柱都有非常详尽的分类和介绍,建议你去看看。那里非常专业。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。