一些化学式的读法

硫化亚铁 S -2(5)①根据 之前,的pH是13,所以的浓度是0.1mol/L,故为:0.1mol/L; Fe +2

黄铜矿化学式 黄铜矿的主要成分的化合价黄铜矿化学式 黄铜矿的主要成分的化合价


黄铜矿化学式 黄铜矿的主要成分的化合价


硫化亚铁铜 S-2 Fe +2 Cu +2(也有说Fe+3 Cu+1的)

硫化亚铜 S -2 Cu矿物晶体化学式的计算,不仅在矿物学研究中是必不可少的,而且对解决岩石和矿床的成因等地质问题也具有重要的实际意义。 +1

绿色矿石的主要物质化学式

(6)由矿物单位分子内作为基准的阳离子数Mef.u.除以ΣMe即得到换算系数(即Mef.u./ΣMe)。

绿色矿石的主要物质化学式Fe2O3·nH2O。

(3)将各组分的质量分数(wB/%)除以该组分的分子量,求出各组分的摩尔数。

矿石组成

矿石一般由矿石矿物和脉石矿物组成。矿石矿物是指矿石中可被利用的金属或非金属矿物,也称有用矿物。如铬矿石中的铬铁矿,铜矿石中的黄铜矿、斑铜矿、辉铜矿和孔雀石,石棉矿石中的石棉等。脉石矿物是指那些与矿石矿物相伴生的、暂不能利用的矿物,也称无用矿物。

黄铁矿主要成分的化学式

2O

3.故填:Fe

2O

3;

黄铁矿的主要成分是FeS

2;故填:FeS

2;矿物的化学式是表示组成矿物各种成分的数量比,以及它们在晶格中的赋存状态、相互关系和晶体结构特征的表达形式。通常矿物的化学式的表示方法有实验式和结构式两种。

2O

3;

黄铜矿的主要成分是CuFeS

2;故填:CuFeS

2.

羟基磷酸钙,人体牙齿的主要组成部分,化学式为ca10(oh)2(po4)6,可由羟基磷灰石制得。

应该是会和h2co3反应

方程式大约就是ca(oh)2+h2co3=caco3+2h2o这样的(可以把羟基磷酸现以某单斜辉石(化学通式为 XY[Z2O6])为例(表 12-4),说明氧原子法计算矿物晶体化学式的具体步骤:钙看成是ca(oh)2·3ca3(po4)2)

黄铜矿(CuFeS 2 )是炼钢和炼铜的主要原料.在高温下灼烧生成二氰化二铁和氧化铜。三氧化二铁和氧化亚铜

自然界矿物大多属含氧盐和氧化物。由于如辉石族等矿物的单位分子内的氧一般极少被其他元素置换,其原子数为常数。故常采用以单位分子中的氧原子数(Of.u.)为基准的氧原子法来计算矿物的晶体化学式。

(1)固体完全溶解,溶液呈血红色

(2)不合理;当原固体粉末为Fe 2 O 3 和Cu 2 O时,加入稀单矿物的化学全分析的结果,通常是以矿物中的各元素或氧化物的质量(wB/%)给出,其一般允许误≤1%,即各组分的质量分数之总和应在99%~101%(有时还要求误不超过0.5%,视实验条件和测定的精度而定)。否则不能用于矿物化学式的计算。H 2 SO 4 后产生的Fe 3+ 与Cu反应生成Fe 2+ ,滴加KSCN溶液后也可能不变红色

(3)Fe 2 O 3 和Cu 2 O;Cu 2 O+2H + ="Cu" + Cu 2+ + H 2 O、2Fe 3+ +Cu=2Fe 2+ +Cu 2+

(4)①B;D ②Fe(OH) 3 ③蒸发浓缩、冷却结晶

试题分析:(1)取少量粉末放入足量稀硫酸中.Fe 2 O 3 与硫酸发生反应:Fe 2 O 3 +3H 2 SO 4 =Fe 2 (SO 4 ) 3 +H 2 O.反应后产生了Fe 3+ 。在所得溶液中再滴加KSCN试剂,会看到固体完全溶解,溶液呈血红色。(2)滴加KSCN试剂后溶液不变红色.某同学认为原同体粉末中一定不含三氧化二铁。这种说法是错误的,因为当原固体粉末为Fe 2 O 3 和Cu 2 O时,加入稀H 2 SO 4 后产生的Fe 3+ 与Cu反应生成Fe 2+ ,滴加KSCN溶液后也可能不变红色。(3)若固体粉末未完全溶解,仍然有固体存在.滴加KSCN试剂时溶液不变红色.则证明原固体粉末是Fe 2 O 3 和Cu 2 O,发生的氧化还原反应的离子方程式为Cu 2 O+2H + ="Cu" + Cu 2+ + H 2 O、2Fe 3+ +Cu=2Fe 2+ +Cu 2+ 。(4)①将含有Fe 2 O 3 和Cu 2 O用硫酸溶解,发生反应Cu 2 O+2H + ="Cu" + Cu 2+ + H 2 O、2Fe 3+ +Cu=2Fe 2+ +Cu 2+ ,由于Fe(OH) 2 和Cu(OH) 2 沉淀的PH很接近,不容易分离、提纯。而Fe(OH) 3 沉淀的PH较小,二者别较大,溶液分离。所以再向该溶液中加入H 2 O 2 把Fe 2+ 氧化为Fe 3+ ,再加入CuO调节溶液的PH至3.7左右,Fe 3+ 完全转化为Fe(OH) 3 沉淀除去。滤液的主要成分为CuSO 4 ,再将溶液蒸发浓缩、冷却结晶,然后过滤即得到较纯净的胆矾(CuSO 4 ·5H 2 O)。 4 ·5H 2 O)的制取方法。主要涉及的知识有物质成分的确定、Fe 3+ 的检验、杂质的除去、混合物的分离、物质的提纯、化学方程式、离子方程式的书写等知识。

铁铜矿石的化学式

故为:>;

金属铜和铁都属于金属,大多数金属在自然界中主要以化合态形式存在;磁铁矿的主要成分为四氧化三铁,其化学式为:Fe 3 O 4 ;磁铁矿的主要成分为氧化铁,其化学式为:Fe 2 O 3 ;黄铁矿的主要成分为:CuFeS 2 ;、孔雀石的主要成分为碱式碳酸铜,其化学式为:Cu 2 (OH) 2 CO 3 ,

故答(2)查出各组分的分子量。案为:化合态;Fe 3 O 4 ;Fe 2 O 3 ; CuFeS 2 ;Cu 2 (OH) 2 CO 3 .

黄铜矿(CuFeS2)是制取铜的主要原料,还可制备硫及铁的化合物.(1)冶炼铜的反应为:8CuFeS2+21O2 高温

(6)以矿物单位分子中的氧原子数Of.u.(如辉石的Of.u.=6)除以氧原子数总和ΣO,得到换算系数(即Of.u./ΣO)。

b.有毒,不可排放到空气中,故b错误应当注意,在计算出矿物中各元素的离子数之后,书写晶体化学式时,习惯上是将其具体数值分别写在各元素符号之右下角,同时成类质同象替代关系的各元素之间无需再加逗号,并在圆括号之后下角列出圆括号内各元素离子数之总和。如某单斜辉石的晶体化学式为:;

c.具有漂白性,可处理后用于漂白织物,故c正确;

d.具有还原性,可被KMnO4溶液氧化,故d错误.

故选ac;

(3)(K2S2O8)具有强氧化性,碘离子具有还原性,二者发生氧化还原反应:S2O82-+2I-=2SO42-+I2,故为:S2O82-+2I-=2SO42-+I2;

②当n(SO2):n(NaOH)=1:2时,二者发生反应生成钠和水,即SO2+2NaOH=Na2SO3+H2O,生成的钠中根离子会发生水解反应,溶液显示碱性,

③在M点,的物质的量是0.1mol,和的物质的量之比是1:2,所以的物质的量是0.2mol,故N点和的物质的量之比是0.2mol:0.2ml=1:1,即N点溶液是亚 ,氢根离子可以电离出氢离子和根离子,此时溶液中含有的阴离子除OH-外,还有SO32-和HSO3-,

化学所有沉淀及其颜色的化学式( 详细点)

OH根离子:除了KOH赤铁矿的中主要成分氧化铁,其化学式为:Fe,NaOH,Ba(OH)2,Ca(OH)2,氨水,其余都不可溶。(Cu离子的颜色为蓝色,所以一般含铜离子的碱都是蓝色,像Cu(OH)2,为蓝色絮状物。还有氧化铁为红褐色沉淀,其余的大多就是白色了)

CO3根离子:除了碳酸钾,碳酸钠,NH4离子的,其余都不溶。(Cu离子的颜色为蓝色,所以一般含铜离子的盐都是蓝的,氧化铜为黑色,单质铜为红色。)

BaSO4,AgCI不溶于水,也不溶于酸。(均为白色)

盐都可溶。

AgS(2)a.处理后用于消毒杀菌,故a正确;O4微溶,为白色浑浊,和沉淀很难区分。

矿物的化学式及其计算

(1)在氧化还原反应中,化合价升高的元素Fe、S,被氧化,故为:Fe、S;

(一)矿物化学式的表示方法

常见的有碱式碳酸铜,亚铁离子的盐溶液,还有浓氯水等等。碱式碳酸铜,呈孔雀绿颜色,所以又叫孔雀石,是一种名贵的矿物宝石。它是铜与空气中的氧气、二氧化碳和水蒸气等物质反应产生的物质,又称铜绿,颜色翠绿。在空气中加热会分解为氧化铜、水和二氧化碳。

矿物的化学成分是以矿物的化学式(formula)表示的,即用组成矿物的化学元素符号按一定原则表示出来,它是以单矿物的化学全分析所得的各组分的相对质量百分含量为基础而计算出来的。具体表示方法通常有实验式和结构式两种。

实验式(experimental formula)只表示矿物中各组分的种类及其数量比。如白云母的实验式为K2O·3Al2O3·6SiO2·2H2O或H2KAl3Si3O12。这种化学式不能反映出矿物中各组分之间的相互关系。

目前,矿物学中普遍采用的是结构式(structural formula),即晶体化学式(crystallochemical formula),它既能表明矿物中各组分的种类及其数量比,又能反映出它们在晶格中的相互关系及其存在形式。如白云母的晶体化学式应写作K{Al2 [(Si3Al)O10](OH)2},表明白云母是一种具层状结构的铝的铝硅酸盐矿物,部分Al进入四面体空隙替代1/4的 Si,另有部分 Al则以六次配位的形式存在于八面体空隙中,K为补偿由Al3+替代Si4+所引起的层间电荷而进入结构层间,此外白云母的组成中还有结构水。

晶体化学式的书写规则如下:

(1)基本原则是阳离子在前,阴离子或络阴离子在后。络阴离子需用方括号括起来。如石英 SiO2、方解石 Ca[CO3 ]。对于某些更大的结构单元,也可用大括号括起来,例如白云母K{Al2 [(Si3Al)O10](OH)2}。

(2)对复化合物,阳离子按其碱性由强至弱、价态从低到高的顺序排列。如白云石 CaMg[CO3 ]2、磁铁矿 FeFe2 O4 (即 Fe2+O4 )。

(3)附加阴离子通常写在阴离子或络阴离子之后。如白云母K{Al2[(Si3Al)O10](OH)2}、氟磷灰石 Ca5[PO4]3F。

(4)矿物中的水分子写在化学式的最末尾,并用圆点将其与其他组分隔开。当含水量不定时,则常用nH2O或aq(即“水”的拉丁文aqua之缩写)表示。如石膏Ca[SO4]·2H2O、蛋白石SiO2·nH2O或SiO2·aq。

(5)互为类质同象替代的离子,用圆括号括起来,并按含量由多到少的顺序排列,中间用逗号分开。如铁闪锌矿(Zn,Fe)S、黄玉Al2[SiO4](F,OH)2。

结晶学及矿物学

矿物的化学式是根据单矿物的化学全分析数据计算得出的,但由此得到的仅是实验式。要写出矿物的晶体化学式,则尚须依据晶体化学理论及晶体结构知识,对矿物中各元素的存在形式作出合理的判断,并按照电价平衡原则,将其分配到适当的晶格位置上。必要时还需进一步结合X射线结构分析资料加以确证。

表12-3 某黄铜矿的化学式计算 然而自然界的许多矿物成分复杂,尤其是大多数硅酸盐矿物,类质同象替代复杂,具有附加阴离子,且同种阳离子能以不同的配位形式存在于不同的晶格位置上(如Al有四次配位和六次配位之分),因而其晶体化学式的计算比较麻烦,须结合晶体化学知识及X射线结构分析资料,以不同的方法来计算和确定矿物的化学式。

矿物晶体化学式的计算方法很多。但不论采用何种方法,其计算原则均是:尽量使占位的离子数目保持合理;尽量使正负电荷总数保持平衡。这里仅简要地介绍常用的阴离子法和阳离子法。

(二)矿物化学式的计算

1.阴离子法

阴离子法的理论基础主要是矿物单位分子(formula unit)内作最紧密堆积的阴离子数是固定不变的,它不受阳离子之间的类质同象替代的影响,其晶格中基本不出现阴离子空位。应用此法的前提是必须有矿物的化学全分析数据及已知矿物的化学通式。

表12-4 某单斜辉石晶体化学式的氧原子计算法 (2)查出各组分的分子量。

(4)用各组分的摩尔数乘以其各自的氧原子系数得到各组分的氧原子数。

(5)将各组分的氧原子数加起来即得矿物中各组分的氧原子数总和ΣO。

(7)用各组分的摩尔数乘以其相应的阳离子的系数,求得各组分的阳离子数。

(8)以各组分的阳离子数乘以换算系数即得出矿物单位分子中的阳离子数(if.u.)。

(9)依据晶体化学理论及晶体结构知识,按矿物的化学通式,将矿物中各阳离子尽可能合理地分配到晶格中相应的位置上。

(10)按矿物的化学通式,检验矿物单位分子中的阳离子总数Σif.u.及正电荷总数Σ(+)。

(11)写出矿物的晶体化学式。

以上计算步骤适用于一般阴离子法,所不同的只是不同矿物作为基准的阴离子数有别。氧原子法通常适合于不含水的氧化物和含氧盐矿物。对含 OH-、F-、Cl-、S2-等附加阴离子的矿物,计算时,必须对氧进行校正,同时注意作基准的单位分子中的阴离子数(氧原子数),其计算过程比较复杂,关于这方面的内容,可参阅有关著作。此外,也可采用以阳离子数为准的计算方法。

2.阳离子法

阳离子法的理论基础是矿物内部某些晶格位置上的阳离子数目相对较固定。它对于成分、结构较复杂的链状、层状结构的硅酸盐如角闪石族、云母族等矿物的化学式计算较为适用。这类矿物单位晶胞中阳离子的位置较多、类质同象替代十分复杂。一般说来,结构内大空隙位置往往未被占满;而小空隙的晶格位置上则极少出现空位,其中的阳离子数相对较稳定,占据这些位置的是一些电价高、半径小、配位数低的阳离子。因此,其晶体化学式计算时,常以这些小空隙位置上单位分子内的阳离子数为基准。例如,白云母的化学通式为X{Y2 [Z4O10](OH,F)2},其X阳离子的晶位上往往都存在有空位,计算化学式时一般以阳离子Y+Z=6为基准。

这里仍例举上述的单斜辉石的化学式计算(表12-5),以说明阳离子法的计算步骤:

表12-5 某单斜辉石晶体化学式的阳离子计算法 (1)检查矿物化学分析数据是否符合化学式计算的精度要求。应注意去除矿物本身固有组成之外的组分(如吸附水等)。

(3)用各组分的质量分数(wB/%)除以其相应的分子量,求出各组分的摩尔数。

(4)将各组分的摩尔数乘以其各自的阳离子的系数,得到各组分的阳离子数。

(5)根据晶体化学知识,按矿物的化学通式,将各阳离子分配到适当的晶格位置上,并求出作为基准的结构位置上的各阳离子数之总和ΣMe。

(7)将各组分的阳离子数乘以换算系数得出矿物单位分子中的阳离子数(if.u.)。

(8)按矿物的化学通式,检验矿物单位分子中的阳离子总数Σif.u.及正电荷总数Σ(+)。

(9)矿物的阴离子总数等于矿物通式中的理论值。对于具附加阴离子的矿物,依据矿物单位分子中的Σ(+)及电价平衡原则,可分别计算出各种阴离子的数目。

(10)按照矿物的化学通式,写出其晶体化学式。

黄铁矿主要成分的化学式

(对于成分较简单的矿物化学式计算,只需将各组分的质量分数(wB/%)分别除以其相应的原子量或分子量,即得到各组分的摩尔数,然后再将组分摩尔数化为简单整数,即可写出矿物的化学式。如表12-3之实例。1)首先检查矿物的化学分析结果是否符合精度要求。表12-4中单斜辉石的各组分的质量分数总和(Σw B/%)为99.82%(去除了吸附水 H2 O-),符合化学式计算的精度要求。

赤铁矿的中主要成分氧化铁,其化学式为:Fe 2 O 3 .故填:Fe 2 O 3 ;

黄铁矿的主要成分是FeS 2 ;故填:FeS 2 ;

铝土矿的主要成分是氧化铝,故填:Al 2 O 3 ;

黄铜矿的主要成分是CuFeS 2 ;故填:CuFeS 2 .