图像边缘检测_图像特征提取三大算法
边缘检测 是基于边界的图像分割方法的步,边缘就是两个不同的相邻区域之间 灰度值 不连续或者突变的地方。因此,检测边缘就是,检测灰度明显变化的地方。而边缘位置处灰度的明显变化是可以借助计算灰度的微分来检测的。一般使用一阶微分和二阶微分检测边缘,在边缘位置,一阶微分的幅度值会有局部极值,二阶微分的幅度值会出现过零点。本文主要介绍边缘检测中的一阶微分算子----梯度算子,包括Roberts、Prewitt和Sobel三种算子。
图像边缘检测_图像特征提取三大算法
图像边缘检测_图像特征提取三大算法
图像边缘检测_图像特征提取三大算法
想要计算梯度图,就要设计模板卷积,首先要搞明白图像在计算时的坐标系,很多博文对应的模板和坐标系都不匹配,我们在后面的卷积作中主要使用计算坐标系。
左图Cameraman所用的坐标系统,常用在图像计算中。其坐标原点在左上角,x轴是水平的,并且向右延伸;y是垂直的,并且向下延伸。 既可以代表这幅图像,也可以表示 坐标处像素的值。
右图Lena的坐标系统,常用在屏幕显示中,因为屏幕扫描是从左向右,从上向下进行的,原点在图像的左上角,纵轴标记图像的行,横轴标记图像的列。 既可以代表这个图像,也可以代表 行列交点处的图像值。
首先我们要知道的是梯度是一个向量,向量的话有方向和大小,梯度方向指向函数变化最快的方向,大小就是它的模,也是的变化率。对于二元函数 ,它在点 的梯度就是 , 或者 ,就是:
其中, ,这个梯度向量的幅度和方向角为
下图展示了一个灰度图的数学化表达,像素点 的灰度值是 ,它有八个邻域。
图像在点 的梯度为
其中
即 对应图像的水平方向, 即 对应水图像的竖直方向。
要理解梯度图的生成,就要先了解模板卷积的过程。
模板卷积是模板运算的一种方式,其步骤如下:
(1)将模板在输入图像中漫游,并将模板中心与图像中某个像素位置重合;
(2)将模板上各个系数与模板下各对应像素的灰度相乘;
(3)将所有乘积相加(为保持灰度范围,常将结果再除以模板系数之和,后面梯度算子模板和为0的话就不需要除了);
(4)将上述运算结果(模板的响应输出)赋给输出图像中对应模板中心位置的像素。
其实梯度图生成前面和模板卷积相同,不同的是要生成梯度图,还需要在模板卷积完成后计算在点 梯度的幅值,将幅值作为像素值,这样才算完。 。
下图是生成梯度图用到的的水平模板和竖直模板:
例如,如果只想生成水平方向的梯度图,那么只计算水平方向的梯度 ,则梯度图上对应点 的灰度值就是
一般是水平方向的 和竖直方向的 各用一个模板,然后结合,那么得到梯度图在点 的灰度值就是
它就是我们上面说到的梯度的幅值,是以计算以2为范数,对应欧式距离,由于涉及平方和开方运算,计算量比较大。(怎么简化计算呢??换一种近似计算方式吧!!!)
在真实的梯度图输出计算中,采用以1为范数(对应城区距离)的简单计算方式,即
另一种简单的方式是以 为范数(对应棋盘距离),即
首先了解下梯度算子的设计,一般是水平方向和竖直方向,水平方向模板转置再对折就是竖直方向。
其本质是一个对角线方向的梯度算子,对应的水平方向和竖直方向的梯度分别为
输出梯度图在 的灰度值为
优点:边缘定位较准
缺点:(1)没有描述水平和竖直方向的灰度变化,只关注了对角线方向,容易造成遗漏。(2)鲁棒性。由于 点本身参加了梯度计算,不能有效的抑制噪声的干扰。
适用于边缘明显且噪声较少的图像。
Prewitt算子是典型的 模板,其模板中心对应要求梯度的原图像坐标 , 对应的8-邻域的像素灰度值如下表所示:
通过Prewitt算子的水平模板 卷积后,对应的水平方向梯度为
通过Prewitt算子的竖直模板 卷积后,对应的竖直方向梯度为
输出梯度图在 的灰度值为
Prewitt算子引入了类似局部平均的运算,对噪声具有平滑作用,较Roberts算子更能抑制噪声。
通过Prewitt算子的水平模板 卷积后,对应的水平方向梯度为
通过Prewitt算子的竖直模板 卷积后,对应的竖直方向梯度为
输出梯度图在 的灰度值为
Sobel算子引入了类似局部加权平均的运算,对边缘的定位比要比Prewitt算子好。
Python 调用OpenCV接口实现Sobel算子边缘检测
图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波。我们知道微分运算是求信号的变化率,具有加强高频分量的作用。
在空域运算中来说,对图像的锐化就是计算微分。
由于数字图像的离散信号,微分运算就变成计算分或梯度。
图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶分,Robert算子(交叉分),Sobel算子等等,是基于寻找梯度强度。拉普拉斯算子(二阶分)是基于过零点检测。通过计算梯度,设置阀值,得到边缘图像。
边缘检测 是图像处理和计算机视觉中的基本问题。
边缘检测的目的 是标识数字图像中亮度变化明显的点。
图像属性中的显著变化通常反映了属性的重要和变化。
边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。
除非场景中的物体非常简单并且照明条件得到了很好的控制,否则确定一个用来判断两个相邻点之间有多大的亮度变化才算是有边界的阈值,并不是一件容易的事。实际上,这也是为什么边缘检测不是一个微不足道问题的原因之一。
图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
有许多方法用于边缘检测,它们的绝大部分可以划分为两类:
滤波 做为边缘检测的预处理通常是必要的,通常采用高斯滤波。
已发表的边缘检测方法应用计算边界强度的度量,这与平滑滤波有本质的不同。 正如许多边缘检测方法依赖于图像梯度的计算,他们用不同种类的滤波器来估计x-方向和y-方向的梯度。
其它一些边缘检测作是 基于亮度的二阶导数 。这实质上是亮度梯度的变化率。
在理想的连续变化情况下,在二阶导数中检测过零点将得到梯度中的局部值。另一方面,二阶导数中的峰值检测是边线检测,只要图像作使用一个合适的尺度表示。
如上所述,边线是双重边缘,这样我们就可以在边线的一边看到一个亮度梯度,而在另一边看到相反的梯度。这样如果图像中有边线出现的话我们就能在亮度梯度上看到非常大的变化。
①滤波: 边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。需要指出,大多数滤波器在降低噪声的同时也导致了边缘强度的损失,因此,增强边缘和降低噪声之间需要折中。
②增强: 增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将邻域(或局部)强度值有显著变化的点突显出来。边缘增强一般是通过计算梯度幅值来完成的。
③检测: 在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点。最简单的边缘检测判据是梯度幅值阈值判据。
④定位: 如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来。
在边缘检测算法中,前三个步骤用得十分普遍。这是因为大多数场合下,仅仅需要边缘检测器指出边缘出现在图像某一像素点的附近,而没有必要指出边缘的位置或方向。
边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线。我们将 边缘定义 为图像中灰度发生急剧变化的区域边界。
边缘检测方法
图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以用 局部图像微分技术 来获得边缘检测算子。 经典的边缘检测方法,是通过对原始图像中像素的某小邻域构造边缘检测算子来达到检测边缘这一目的的。
边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。
先灰度化,再用低通滤波器降噪,用高通滤波器提取边缘,二值化。
低通滤波器见前面我发布的图像预处理,下面讲的都是高通滤波器。
为了提取到图像的边缘,我们需要滤波器的帮助。这类滤波器以矩阵的形式存在,通常被称为卷积核,就是一些值网格,能够对图像进行修改。
对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。这种计算被称为图像卷积。
滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。
索贝尔过滤器常用于边缘检测和发现图像中的强度模式。向图像中应用索贝尔过滤器就相当于沿着 x 或 y 方向求图像的(近似)导数。
Sobel_x和 Sobel_y的运算符分别如下所示:
Laplace算子是一种各向同性算子,二阶微分算子,在只关心边缘的位置而不考虑其周围的像素灰度值时比较合适。
Laplace算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此只适用于无噪声图象。存在噪声情况下,使用Laplacian算子检测边缘之前需要先进行低通滤波。
了解更多
Canny边缘检测是一种非常流行的边缘检测算法,是John Canny在1986年提出的。它是一个多阶段的算法,即由多个步骤构成。
首先,图像降噪。我们知道梯度算子可以用于增强图像,本质上是通过增强边缘轮廓来实现的,也就是说是可以检测到边缘的。但是,它们受噪声的影响都很大。那么,我们步就是想到要先去除噪声,因为噪声就是灰度变化很大的地方,所以容易被识别为伪边缘。
第二步,计算图像梯度,得到可能边缘。计算图像梯度能够得到图像的边缘,因为梯度是灰度变化明显的地方,而边缘也是灰度变化明显的地方。当然这一步只能得到可能的边缘。因为灰度变化的地方可能是边缘,也可能不是边缘。这一步就有了所有可能是边缘的。
第三步,非极大值抑制。通常灰度变化的地方都比较集中,将局部范围内的梯度方向上,灰度变化的保留下来,其它的不保留,这样可以剔除掉一大部分的点。将有多个像素宽的边缘变成一个单像素宽的边缘。即“胖边缘”变成“瘦边缘”。
第四步,双阈值筛选。通过非极大值抑制后,仍然有很多的可能边缘点,进一步的设置一个双阈值,即低阈值(low),高阈值(high)。灰度变化大于high的,设置为强边缘像素,低于low的,剔除。在low和high之间的设置为弱边缘。进一步判断,如果其领域内有强边缘像素,保留,如果没有,剔除。这样做的目的是只保留强边缘轮廓的话,有些边缘可能不闭合,需要从满足low和high之间的点进行补充,使得边缘尽可能的闭合。
详细说下canny检测的原理吧
Step1.高斯Filter平滑图像
Step2.用一阶偏导的有限分来计算梯度的幅值和方向
Step3.对梯度幅值进行非极大值抑制
Step4.用双阈值算法检测和连接边缘
Canny边缘检测
边缘检测是图像处理的重要基础算法。它是许多高阶的图像算法(例如轮廓检测,目标检测)的基础。Canny边缘检测算法是OpenCV中使用的边缘检测算法,由John F. Canny在1986年提出。由于它出色的检测和容错能力,至今一直被广泛使用。Canny边缘检测具有以下特点:
那么Canny边缘检测为什么会有出色的性能?这和它的实现有着很大关系,Canny边缘检测主要分为以下几个步骤:
因为边缘检测容易受到图像中的噪点影响,所以在边缘检测之前通常需要对图像进行降噪处理。这里我们使用高斯滤波进行降噪。关于高斯滤波可以参考 这里 。
如何确定图像的边缘?图像的边缘像素的灰度值通常会有剧烈变化。而梯度可以用来衡量灰度值变化的大小和方向。图像在x, y方向的梯度值可以通过点乘下面的Sobel算子得到:
在得到x, y方向的梯度值以后,通过以下公式计算出方向梯度值:
高斯滤波在降噪的同时,边缘也有可能被放大。引入非值抑制就是为了解决这个问题,使得检测出的边缘更细(窄)。 即:如果一个像素点属于边缘,那么这个像素点在梯度方向上的梯度值是必须是的。
如下图所示,A是在图像的边缘上的点,计算出的梯度方向垂直于边缘。B和C在梯度方向上,这时我们比较A和B,C的灰度值,如果A比B和C都大,则选取A作为结果。如果A比B或者C小,则将A的值设为0。
为了确定最终的边缘,我们需要设定一个阈值来挑选出足够“像”边缘的点,即它的梯度值要足够大。但如果设定单一阈值,最终的检测精度就非常依赖于阈值设定,过大或者过小的阈值都会让结果偏离预期。而Canny边缘检测算法设置两个阀值,分别为maxVal和minVal。其中大于maxVal的都被检测为边缘,而低于minval的都被检测为非边缘。对于中间的像素点,如果与确定为边缘的像素点邻接,则判定为边缘;否则为非边缘。这样有效地提高了检测精度。
OpenCV中提供了Canny边缘检测的实现。我们直接调用 Canny() 函数即可
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。