正切三角函数公式大全表格 正切值的三角函数公式
初中数学三角函数表
三角函数是初中数学中重要的知识点,下面我整理了初中数学三角函数表,希望对数学学习有所帮助。
正切三角函数公式大全表格 正切值的三角函数公式
正切三角函数公式大全表格 正切值的三角函数公式
数学特殊三角函数值
初中数学三角函数的应用
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割;
符号:sin、cos、tan、cot、sec、csc。
正弦函数sin(A)=a/c
余弦函数cos(A)=b/c
正切函数tan(A)=a/b
余切函数cot(A)=b/a
其中a为对边,b为邻边,c为斜边。
三角函数公式表
积化和公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
三倍角公式
sin3α=3sinα-4sin^3α;
cos3α=4cos^3α-3cosα
两角和与的三角函数关系
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
正弦二倍角公式
sin2α=2cosαsinα
推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
拓展公式:sin2A=2sinAcosA=2tanAcos2A=2tanA/[1+tan2A]
1+sin2A=(sinA+cosA)^2
余弦二倍角公式
余弦二倍角公式有三组表示形式,三组形式等价:
1.Cos2a=Cos2a-Sin2a=[1-tan2a]/[1+tan2a]
2.Cos2a=1-2Sin2a
3.Cos2a=2Cos2a-1
推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2A-sin^2A=2cos^2A-1
=1-2sin^2A
正切二倍角公式
tan2α=2tanα/[1-tan2α]
推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan2A]
降幂公式
cosA^2=[1+cos2A]/2
sinA^2=[1-cos2A]/2
tanA^2=[1-cos2A]/[1+cos2A]
变式:sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4);cos2α=2sin(α+π/4)cos(α+π/4)
余弦定理:
a^2=b^2+c^2-2bccosA
b^2=c^2+a^2-2cacosB
c^2=a^2+b^2-2abcosC
cos sin tan度数公式表
一、sin度数公式
1、sin30 ° = 1/2
2、sin45 ° =根号2/2
3、sin60 ° = 根号3/2
二、cos度数公式
1、cos30 ° =根号3/2
2、cos45 ° =根号2/2
3、cos60 ° =1/2
三、tan度数公式
1、tan30 ° =根号3/3
2、tan45 ° =1
3、tan60 ° =根号3
cos sin tan度数公式表如下:
三角函数
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。常见的三角函数包括正弦函数、余弦函数和正切函数。
tan的所有公式是什么?
tan计算公式是tana=y/x,直角三角形之底为x,高为y,斜边为z,底与斜边之间的夹角为a。tan一般指正切,在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的与一个比值的的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
tan(360+a)=tana
tan(-a)=-tana
tan(360-a)=tan(-a)
tan(180-a)=-tana
tan(180+a)=tana
tan(90+a)=-cota
tan(90-a)=cota
tan(2kπ+α)=tanα(k∈Z)
设α为任意角,终边相同的角的同一三角函数的值相等
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
补充
倍角公式
1、Sin2A=2SinACosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )
降幂公式
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))
推导公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
两角和
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和化积
1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
积化和
1、sinαsinβ = [cos(α-β)-cos(α+β)] /2
2、sinαcosβ = [sin(α+β)+sin(α-β)]/2
3、cosαsinβ = [sin(α+β)-sin(α-β)]/2
诱导公式
1、(-α) = -sinα、cos(-α) = cosα
2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα
3、3cos(π/2+α) = -sinα
4、(π-α) = sinα、cos(π-α) = -cosα
5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα
6、tan(π-α)=-tanα、tan(π+α)=tanα
锐角三角函数公式
1、sin α=∠α的对边 / 斜边
2、α=∠α的邻边 / 斜边
3、tan α=∠α的对边 / ∠α的邻边
4、cot α=∠α的邻边 / ∠α的对边
半角公式。
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。
倍角公式。
tan2α=(2tanα)/(1-tanα^2)。
公式。
tanα=2tan(α/2)/。
两角和与公式。
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)。
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)。
和化积公式。
tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)。
tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)。
tan的所有公式有:
半角公式。
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。
倍角公式。
tan2α=(2tanα)/(1-tanα^2)。
降幂公式。
tan^2(α)=(1-cos(2α)/(1+cos(2α)。
公式。
tanα=2tan(α/2)/。
两角和与公式。
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)。
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)。
和化积公式。
tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)。
tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)。
解答:
关于tan公式
tanα·cotα=1
sinα/cosα=tanα=secα/cscα
1+tan^2(α)=sec^2(α)
tanα=2tan(α/2)/[1-tan^2(α/2)]
tan(2α)=2tanα/[1-tan^2(α)]
tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)
tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
tan3α=tanα·tan(π/3+α)·tan(π/3-α)
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1tan度数公式
1.tan30=√3/3
2.tan45=1
3.tan60=√3
2正切定义
正切函数是角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做正切。
若将θ放在直角坐标系中即tanθ=y/x。tanA=∠A的对边/∠A对边的邻边。在直角坐标系中相当于直线的斜率k。
sin cos tan度数表格是什么?
sin cos tan度数表格内容如下:
1、正弦
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边。
2、余弦
在直角三角形中,任意一锐角∠A的临边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的临边/斜边。
3、正切
在直角三角形中,任意一锐角∠A的对边与临边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/临边。
相关公式:
1、平方和关系(sinα)^2+(cosα)^2=1
2、积的关系
sinα=tanα×cosα(即sinα/cosα=tanα)
cosα=cotα×sinα(即cosα/sinα=cotα)
tanα=sinα×secα(即tanα/sinα=secα)
3、倒数关系
tanα×cotα=1
sinα×cscα=1
cosα×secα=1
4、商的关系
sinα/cosα=tanα=secα/cscα
三角函数tan公式大全
三角函数tan指的是正切函数。三角函数tan公式有倍角公式公式、半角公式、三倍角公式、同角关系公式等等。
三角函数tan公式
(1)tan及其他三角函数的半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
(2)tan及其他三角函数的倍角公式
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
(3)tan及其他三角函数的三倍角公式
sin3α=4sinαsin(π/3+α)sin(π/3-α)
cos3α=4cosαcos(π/3+α)cos(π/3-α)
tan3α=tanαtan(π/3+α)tan(π/3-α)
同角三角函数的关系公式
(1)平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
(2)积的关系:
sinα=tanαcosα cosα=cotαsinα
tanα=sinαsecα cotα=cosαcscα
secα=tanαcscα cscα=secαcotα
(3)倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
sin tan cos函数表是?
sin@=对边 / 斜边
cos@=邻边 / 斜边
tan@=对边 / 邻边
cot@=邻边 / 对边
一、sin度数公式
1、sin 30= 1/2
2、sin 45=根号2/2
3、sin 60= 根号3/2
二、cos度数公式
1、cos 30=根号3/2
2、cos 45=根号2/2
3、cos 60=1/2
三、tan度数公式
1、tan 30=根号3/3
2、tan 45=1
3、tan 60=根号3
扩展资料:
sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0sin15=0.650;
sin15°=0.259
cos15=-0.759;cos15°=0.966
tan15=-0.855;tan15°=0.268
sin30°=1/2
cos30°=0.866;
参考资料来源:
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系 836084111@qq.com 删除。